<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于剩余充電電量的鋰離子電池模組內短路在線定量診斷算法

來鑫 李彬 孟正 李相俊 靳文濤 汪湘晉 馬瑜涵 鄭岳久

來鑫, 李彬, 孟正, 李相俊, 靳文濤, 汪湘晉, 馬瑜涵, 鄭岳久. 基于剩余充電電量的鋰離子電池模組內短路在線定量診斷算法[J]. 工程科學學報, 2023, 45(1): 158-168. doi: 10.13374/j.issn2095-9389.2021.08.02.002
引用本文: 來鑫, 李彬, 孟正, 李相俊, 靳文濤, 汪湘晉, 馬瑜涵, 鄭岳久. 基于剩余充電電量的鋰離子電池模組內短路在線定量診斷算法[J]. 工程科學學報, 2023, 45(1): 158-168. doi: 10.13374/j.issn2095-9389.2021.08.02.002
LAI Xin, LI Bin, MENG Zheng, LI Xiang-jun, JIN Wen-tao, WANG Xiang-jin, MA Yu-han, ZHENG Yue-jiu. Online quantitative diagnosis algorithm for the internal short circuit of a lithium-ion battery module based on the remaining charge capacity[J]. Chinese Journal of Engineering, 2023, 45(1): 158-168. doi: 10.13374/j.issn2095-9389.2021.08.02.002
Citation: LAI Xin, LI Bin, MENG Zheng, LI Xiang-jun, JIN Wen-tao, WANG Xiang-jin, MA Yu-han, ZHENG Yue-jiu. Online quantitative diagnosis algorithm for the internal short circuit of a lithium-ion battery module based on the remaining charge capacity[J]. Chinese Journal of Engineering, 2023, 45(1): 158-168. doi: 10.13374/j.issn2095-9389.2021.08.02.002

基于剩余充電電量的鋰離子電池模組內短路在線定量診斷算法

doi: 10.13374/j.issn2095-9389.2021.08.02.002
基金項目: 國家電網公司科技項目(3A-20-304-008)
詳細信息
    通訊作者:

    E-mail : laixin@usst.edu.cn

  • 中圖分類號: TM912.4

Online quantitative diagnosis algorithm for the internal short circuit of a lithium-ion battery module based on the remaining charge capacity

More Information
  • 摘要: 通過對鋰離子電池內短路的在線診斷可以有效預防熱失控的發生。本文利用鋰離子電池模組的充電曲線提出一種基于剩余充電電量的內短路在線定量診斷算法,并對該算法在不同的電壓采集精度與采樣周期、溫度變化、老化程度等條件下進行仿真與實驗驗證。結果表明所提出的算法在一定條件下能準確定量地診斷出內短路電阻:(1) 對于10 Ω級別的嚴重內短路,即使在10 mV的采集精度、10 s的采樣周期、變溫度條件下也能得到很高的診斷精度。對于100 Ω級別的早期內短路,所診斷的內短路阻值比實際值偏小,診斷時間變長。為了提高早期內短路診斷的精度與時效性,電壓采集精度與采樣頻率應該分別在1 mV 與 1 Hz 以上;(2) 電池老化會降低內短路的診斷精度,但是對于10 Ω級別的內短路影響很小。極端溫度變化同樣會影響內短路定量診斷精度,極端高溫下的診斷誤差比極端低溫下的診斷誤差要大,在極限低溫(–20 ℃)下的內短路內阻的診斷誤差在6%以內。研究結論為提高鋰離子內短路的定量診斷精度具有重要意義。

     

  • 圖  1  剩余充電電量估計原理

    Figure  1.  Remaining charge estimation principle

    圖  2  基于RCC變化的內短路診斷原理

    Figure  2.  Principle of internal short circuit diagnosis based on the RCC change

    圖  3  內短路模組建模.(a)電池組模型,(b)單體模型,(c)一階RC模型

    Figure  3.  Internal short-circuit module modeling: (a) module model; (b) cell model; (c) first order RC model

    圖  4  5 mV數據精度對算法的影響.(a) Sim03: RISC=100 Ω; (b) Sim04: RISC=10 Ω

    Figure  4.  Impact of the 5 mV data accuracy on the algorithm: (a) Sim03: RISC=100 Ω, (b) Sim04: RISC=10 Ω

    圖  5  10 s采樣周期對算法的影響.(a) Sim07: RISC=100 Ω; (b) Sim08: RISC=10 Ω

    Figure  5.  Impact of the 10 s sampling period on the algorithm: (a) Sim07: RISC=100 Ω; (b) Sim08: RISC=10 Ω

    圖  6  等效內短路實驗裝置

    Figure  6.  Device of equivalent internal short circuit experiment

    圖  7  電池老化對算法精度的影響.(a) Exp01:全新模組(RISC=100 Ω); (b) Exp08:老化模組(RISC=100 Ω)

    Figure  7.  Impact of battery aging on algorithm accuracy: (a) Exp01: new module (RISC=100 Ω); (b) Exp08: aging module (RISC=100 Ω)

    圖  8  極限溫度下內短路診斷實驗結果.(a) Exp03:極限高溫為55 ℃; (b) Exp05:極限低溫為?20 ℃

    Figure  8.  Test results of internal short circuit diagnosis under extreme temperatures: (a) Exp03: extreme high temperature of 55 ℃; (b) Exp05: extreme high temperature of ?20 ℃

    圖  9  變溫度下的內短路診斷實驗結果.(a) Exp06: 25 ℃→15 ℃; (b) Exp07: 45 ℃→35 ℃

    Figure  9.  Test results of internal short circuit diagnosis under variable temperature: (a) Exp06: 25 ℃→15 ℃ (b) Exp07: 45 ℃→35 ℃

    表  1  各種仿真場景下的內短路診斷結果

    Table  1.   Diagnosis results of the internal short circuit in various simulation scenarios

    Simulation numberVoltage accuracy / mVSampling period / sRISC / ΩDiagnostic value / ΩError / %Detection time / h
    Sim010.5110095.474.5318.1
    Sim020.51109.534.718.1
    Sim031110071.9028.118.1
    Sim0411109.574.318.1
    Sim055110027.0372.965.3
    Sim0651108.8711.318.2
    Sim0710110017.8983.177.1
    Sim08101108.8611.418.1
    Sim09110100126.6626.618.1
    Sim10110109.613.518.1
    Sim11120100196.296.218.2
    Sim12120109.653.918.1
    下載: 導出CSV

    表  2  內短路阻值定量診斷實驗結果

    Table  2.   Quantitative diagnosis test results of the internal short-circuit resistance

    Experiment numberAging degreeTemperature / ℃RISC / ΩDiagnostic value / ΩDiagnostic
    error / %
    Exp01New module251001055
    Exp02New module251010.66
    Exp03New module5510014646
    Exp04New module5100973
    Exp05New module?20100946
    Exp06New module25→1510013838
    Exp07New module45→351001022
    Exp08Aging module2510013232
    Exp09Aging module251011.212
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Pan F W, Gong D L, Gao Y, et al. Lithium-ion battery state of charge estimation based on a robust H filter. Chin J Eng, 2021, 43(5): 693

    潘鳳文, 弓棟梁, 高瑩, 等. 基于魯棒H濾波的鋰離子電池SOC估計. 工程科學學報, 2021, 43(5):693
    [2] Lai X, Zheng Y J, Zhou L, et al. Electrical behavior of overdischarge-induced internal short circuit in lithium-ion cells. Electrochimica Acta, 2018, 278: 245 doi: 10.1016/j.electacta.2018.05.048
    [3] An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22

    安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22
    [4] Song Y H, Yang Y X, Hu Z C. Present status and development trend of batteries for electric vehicles. Power Syst Technol, 2011, 35(4): 1 doi: 10.13335/j.1000-3673.pst.2011.04.009

    宋永華, 陽岳希, 胡澤春. 電動汽車電池的現狀及發展趨勢. 電網技術, 2011, 35(4):1 doi: 10.13335/j.1000-3673.pst.2011.04.009
    [5] Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater, 2018, 10: 246 doi: 10.1016/j.ensm.2017.05.013
    [6] Chen Z Y, Xiong R, Sun F C. Research status and analysis for battery safety accidents in electric vehicles. J Mech Eng, 2019, 55(24): 93 doi: 10.3901/JME.2019.24.093

    陳澤宇, 熊瑞, 孫逢春. 電動汽車電池安全事故分析與研究現狀. 機械工程學報, 2019, 55(24):93 doi: 10.3901/JME.2019.24.093
    [7] Su W, Zhong G B, Shen J N, et al. The progress in fault diagnosis techniques for lithium-ion batteries. Energy Storage Sci Technol, 2019, 8(2): 225 doi: 10.12028/j.issn.2095-4239.2018.0195

    蘇偉, 鐘國彬, 沈佳妮, 等. 鋰離子電池故障診斷技術進展. 儲能科學與技術, 2019, 8(2):225 doi: 10.12028/j.issn.2095-4239.2018.0195
    [8] Zheng Y F. Study on safety of lithium-ion battery under overuse conditions. Mar Electr Electron Eng, 2021, 41(2): 44 doi: 10.3969/j.issn.1003-4862.2021.02.011

    鄭蕓菲. 鋰離子電池在濫用條件下的安全性研究. 船電技術, 2021, 41(2):44 doi: 10.3969/j.issn.1003-4862.2021.02.011
    [9] Gan W, Han X Y. A lithium ion battery internal short circuit fault diagnosis method based on wavelet noise reduction and curve similarity. Mach Des Manuf Eng, 2021, 50(5): 57 doi: 10.3969/j.issn.2095-509X.2021.05.012

    甘偉, 韓孝耀. 基于小波降噪-曲線相似程度的鋰離子電池內短路故障診斷方法. 機械設計與制造工程, 2021, 50(5):57 doi: 10.3969/j.issn.2095-509X.2021.05.012
    [10] Chen M B, Bai F F, Song W J, et al. Multi-point internal short circuit and physical field variation of Li-ion battery. Battery Bimon, 2021, 51(2): 131 doi: 10.19535/j.1001-1579.2021.02.006

    陳明彪, 白帆飛, 宋文吉, 等. 鋰離子電池多點內短路及物理場變化. 電池, 2021, 51(2):131 doi: 10.19535/j.1001-1579.2021.02.006
    [11] Zheng Y J, Ouyang M G, Lu L G, et al. On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 1. Equalization based on remaining charging capacity estimation. J Power Sources, 2014, 247: 676
    [12] Wang H B, Li Y, Wang Q Z, et al. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse. Chin J Eng, 2021, 43(5): 663

    王淮斌, 李陽, 王欽正, 等. 三元鋰離子動力電池熱失控及蔓延特性實驗研究. 工程科學學報, 2021, 43(5):663
    [13] Wang Z P, Yuan C G, Li X Y. An analysis on challenge and development trend of safety management technologies for traction battery in new energy vehicles. Automot Eng, 2020, 42(12): 1606 doi: 10.19562/j.chinasae.qcgc.2020.12.002

    王震坡, 袁昌貴, 李曉宇. 新能源汽車動力電池安全管理技術挑戰與發展趨勢分析. 汽車工程, 2020, 42(12):1606 doi: 10.19562/j.chinasae.qcgc.2020.12.002
    [14] Zhang Y J, Wang H W, Feng X N, et al. Research progress on thermal runaway combustion characteristics of power lithiumion batteries. J Mech Eng, 2019, 55(20): 17

    張亞軍, 王賀武, 馮旭寧, 等. 動力鋰離子電池熱失控燃燒特性研究進展. 機械工程學報, 2019, 55(20):17
    [15] Feng X N, Pan Y, He X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. J Energy Storage, 2018, 18: 26 doi: 10.1016/j.est.2018.04.020
    [16] Kong X D, Zheng Y J, Ouyang M G, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs. J Power Sources, 2018, 395: 358 doi: 10.1016/j.jpowsour.2018.05.097
    [17] Kenney B, Darcovich K, MacNeil D D, et al. Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules. J Power Sources, 2012, 213: 391 doi: 10.1016/j.jpowsour.2012.03.065
    [18] Dubarry M, Truchot C, Cugnet M, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations. J Power Sources, 2011, 196(23): 10328
    [19] Guo Z Q, Xiong Q, Liang B H, et al. Consistency detection approach for lithium-ion battery pack based on current characteristics of bridging capacitors. High Voltage Engineering, 2022, 48(5): 1933

    郭自清, 熊慶, 梁博航, 等. 基于橋接電容電流特性的鋰離子電池組一致性檢測方法. 高電壓技術, 2022, 48(5):1933
    [20] Chen C, Zhu R Y. Research on consistency simulation of lithium ion battery applied to special equipment. Electron Test, 2020(24): 43 doi: 10.3969/j.issn.1000-8519.2020.24.015

    陳晨, 朱瑞銀. 應用于特種設備的鋰離子電池一致性仿真研究. 電子測試, 2020(24):43 doi: 10.3969/j.issn.1000-8519.2020.24.015
    [21] Lai X, Qin C, Zheng Y J, et al. An adaptive capacity estimation scheme for lithium-ion battery based on voltage characteristic points in constant-current charging curve. Automot Eng, 2019, 41(1): 1 doi: 10.19562/j.chinasae.qcgc.2019.01.001

    來鑫, 秦超, 鄭岳久, 等. 基于恒流充電曲線電壓特征點的鋰離子電池自適應容量估計方法. 汽車工程, 2019, 41(1):1 doi: 10.19562/j.chinasae.qcgc.2019.01.001
    [22] Zheng Y J, Lu L G, Han X B, et al. LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation. J Power Sources, 2013, 226: 33 doi: 10.1016/j.jpowsour.2012.10.057
    [23] Hu X S, Tang X L. Review of modeling techniques for lithium-ion traction batteries in electric vehicles. J Mech Eng, 2017, 53(16): 20 doi: 10.3901/JME.2017.16.020

    胡曉松, 唐小林. 電動車輛鋰離子動力電池建模方法綜述. 機械工程學報, 2017, 53(16):20 doi: 10.3901/JME.2017.16.020
    [24] Wang J, Liu P, Hicks-Garner J, et al. Cycle-life model for graphite-LiFePO4 cells. J Power Sources, 2011, 196(8): 3942 doi: 10.1016/j.jpowsour.2010.11.134
    [25] Zhou L, Zheng Y J, Ouyang M G, et al. A study on parameter variation effects on battery packs for electric vehicles. J Power Sources, 2017, 364: 242 doi: 10.1016/j.jpowsour.2017.08.033
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  598
  • HTML全文瀏覽量:  223
  • PDF下載量:  95
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-08-02
  • 網絡出版日期:  2021-09-06
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回