<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

智能阻銹劑LDH-NO2在鋼筋混凝土中的控釋機制及緩蝕性能

文成 田玉琬 楊德越 王貴 鄧培昌 董超芳

文成, 田玉琬, 楊德越, 王貴, 鄧培昌, 董超芳. 智能阻銹劑LDH-NO2在鋼筋混凝土中的控釋機制及緩蝕性能[J]. 工程科學學報, 2022, 44(8): 1368-1378. doi: 10.13374/j.issn2095-9389.2021.08.01.003
引用本文: 文成, 田玉琬, 楊德越, 王貴, 鄧培昌, 董超芳. 智能阻銹劑LDH-NO2在鋼筋混凝土中的控釋機制及緩蝕性能[J]. 工程科學學報, 2022, 44(8): 1368-1378. doi: 10.13374/j.issn2095-9389.2021.08.01.003
WEN Cheng, TIAN Yu-wan, YANG De-yue, WANG Gui, DENG Pei-chang, DONG Chao-fang. Controlled release mechanism and inhibition performance of smart inhibitor LDH-NO2 in the reinforced concrete structures[J]. Chinese Journal of Engineering, 2022, 44(8): 1368-1378. doi: 10.13374/j.issn2095-9389.2021.08.01.003
Citation: WEN Cheng, TIAN Yu-wan, YANG De-yue, WANG Gui, DENG Pei-chang, DONG Chao-fang. Controlled release mechanism and inhibition performance of smart inhibitor LDH-NO2 in the reinforced concrete structures[J]. Chinese Journal of Engineering, 2022, 44(8): 1368-1378. doi: 10.13374/j.issn2095-9389.2021.08.01.003

智能阻銹劑LDH-NO2在鋼筋混凝土中的控釋機制及緩蝕性能

doi: 10.13374/j.issn2095-9389.2021.08.01.003
基金項目: 廣東省基礎與應用基礎研究基金項目(2021A1515110382);湛江市科技計劃項目(2021E05005)
詳細信息
    通訊作者:

    E-mail: tianyuwan90@163.com

  • 中圖分類號: TG174.2

Controlled release mechanism and inhibition performance of smart inhibitor LDH-NO2 in the reinforced concrete structures

More Information
  • 摘要: 為解決傳統阻銹劑過早失活、過量投放的問題,研究了一種具有控釋、長效、靶向特征的智能阻銹劑LDH-NO2。采用第一性原理計算、物理檢測技術、浸泡實驗和電化學方法研究了智能阻銹劑LDH-NO2的微觀和宏觀控釋規律及緩蝕行為。結果表明:(1) 在氯離子侵蝕或碳化的混凝土環境中,LDH-NO2中的$ {\text{NO}}_2^ - $可快速、自發釋放,1 h內達到釋放平衡,從而及時修復鋼筋的腐蝕損傷;(2) LDH-NO2對碳化環境比氯離子環境更加敏感,其與$ {\text{CO}}_3^{2 - } $發生離子交換反應的化學能更大,反應產物的層間距更小、層間作用力更強、穩定性更好;(3) 含氯碳化混凝土環境中,5 g·L?1 LDH-NO2對碳鋼鋼筋的緩蝕效率約99%,使碳鋼鋼筋腐蝕速率下降一個數量級;(4) 相較于傳統阻銹劑NaNO2,智能阻銹劑LDH-NO2可有效延長碳鋼鋼筋的腐蝕起始時間、減少其腐蝕面積、降低其腐蝕程度;(5) LDH-NO2的緩蝕性能主要源于LDH對$ {\text{NO}}_2^ - $的釋放,而非其對腐蝕性離子的吸附。因此,智能阻銹劑LDH-NO2在鋼筋混凝環境中具有優異的緩蝕性能和長效性。

     

  • 圖  1  LDHs主體結構的構建.(a) 3R1構型的Zn2Al1(OH)6(NO2)1超胞側視圖;(b) Zn(OH)2的(3×2×1)超胞的俯視圖及其中的(1×1)和($\sqrt 3$×$\sqrt 3 $)R30°構型;(c) $ {\text{Zn}}_{2}{\text{Al}}_{1}(\text{OH}{)}_{6}^{\text{+}} $單胞的俯視圖

    Figure  1.  Structure of LDHs: (a) left view of the Zn2Al1(OH)6(NO2)1 supercell with 3R1 structure; (b) top view of the (3×2×1) supercell of Zn(OH)2 with 3R1 structure; (c) top view of the Zn2Al1(OH)6+ primitive cell

    圖  2  幾何優化后LDH-NO2 (a)、LDH-Cl (b)和LDH-CO3 (c)的穩定構象  

    Figure  2.  Different interlayer spaces of LDH-NO2 (a), LDH-Cl (b), and LDH-CO3 (c) after optimization

    圖  3  LDH-NO2、LDH-Cl、LDH-CO3的態密度圖(a)和層板投射態密度圖(b) (費米能級被定義為0 eV)

    Figure  3.  Density of states diagram (a) and projected density of the layer diagram (b) for LDH-NO2, LDH-Cl, and LDH-CO3(Fermi energy level was set to 0 eV)

    圖  4  LDH-NO2、LDH-Cl和LDH-CO3中氫鍵的鍵長和鍵角分布

    Figure  4.  Length and angle distributions of H Bonds for LDH-NO2, DH-Cl, and LDH-CO3

    圖  5  LDH-NO2智能阻銹劑的X射線衍射圖譜(a)和掃描電鏡形貌(b)

    Figure  5.  XRD pattern (a) and SEM morphology (b) of the LDH-NO2 inhibitor

    圖  6  混凝土模擬孔隙液中LDH-NO2的亞硝酸釋放動力學曲線.(a)階段性添加腐蝕性離子;(b)直接添加腐蝕性離子

    Figure  6.  Release kinetic of nitrites from LDH-NO2 in the simulated concrete pore solution: (a) gradual addition of corrosive ions; (b) addition of corrosive ions in the beginning

    圖  7  (a)碳鋼鋼筋在含0.17 mol·L?1 NaCl和0.1 mol·L?1 NaHCO3(pH值11.5)的混凝土模擬液中浸泡1 h后的極化曲線;(b)擬合結果

    Figure  7.  (a) Polarization curves of carbon steel reinforcement after 1 h of immersion in the concrete simulation solution with 0.17 mol·L?1 NaCl and 0.1 mol·L?1 NaHCO3 (pH value of 11.5);(b) fitting results

    圖  8  碳鋼鋼筋在含0.17 mol·L?1 NaCl和0.1 mol·L?1 NaHCO3(pH值11.5)的混凝土模擬液中浸泡16 d后的腐蝕結果. (a)腐蝕起始時間和腐蝕面積;(b)腐蝕形貌

    Figure  8.  Corrosion behavior of the carbon steel reinforcement after 16 d of immersion in the concrete simulation solution with 0.17 mol·L?1 NaCl and 0.1 mol·L?1 NaHCO3 (pH value of11.5): (a) corrosion initiation time and mass loss; (b) corrosion morphology

    圖  9  碳鋼鋼筋在含0.17 mol·L?1 NaCl和0.1 mol·L?1 NaHCO3(pH值11.5)的混凝土模擬液中浸泡1 h后的Nyquist圖和Bode圖:(a, b)添加LDH-NO2阻銹劑;(c, d)添加NaNO2阻銹劑;(e, f)添加LDH-NO3阻銹劑

    Figure  9.  Nyquist plots and Bode plots of carbon steel reinforcement after 1 h of immersion in the concrete simulation solution with 0.17 mol·L?1 NaCl and 0.1 mol·L?1 NaHCO3 (pH value of 11.5): (a–b) adding LDH-NO2 inhibitor; (c–d) adding NaNO2 inhibitor; (e–f) adding LDH-NO3 inhibitor

    圖  10  含氯碳化混凝土模擬液中LDH-NO2、NaNO2和LDH-NO3對碳鋼鋼筋的緩蝕效率

    Figure  10.  Inhibition efficiency of LDH-NO2, NaNO2, and LDH-NO3 on the carbon steel reinforcement in the chloride-contaminated and carbonated concrete simulation solution

    表  1  LDH-NO2、LDH-Cl、LDH-CO3的主要結構參數

    Table  1.   Main geometrical parameters for hydrotalcites LDH-NO2, LDH-Cl, and LDH-CO3

    SpeciesMethodsLattice constant/nmBond distance/nmBond angle/(°)
    a=bcMetal-OO?HA?H*A?O**C?ON?OO?C?OO?N?O
    LDH-NO2Calculation0.31182.39390.20250.09850.17160.31580.1261119.041
    LDH-ClCalculation0.31182.36860.20620.09820.20560.2988
    Experiment0.30812.33510.20540.2992
    LDH-CO3Calculation0.31182.22840.20260.0980.28140.1469120
    Experiment0.30742.27430.20340.1170120.01
    Note: * represents the bond length between the interlayer anion and the H atom of the LDH layer;** is the bond length between the interlayer anion and the O atom of the LDH layer.
    下載: 導出CSV

    表  2  LDH-NO2、LDH-Cl、LDH-CO3層間空間中各原子的分數坐標

    Table  2.   Fractional coordinates of atoms in the interlayer spaces for hydrotalcites LDH-NO2, LDH-Cl, and LDH-CO3

    Atomic positionsLDH-NO2LDH-ClLDH-CO3
    InterlayerN(0.62, 0.55)
    O(0.48,0.51)
    O(0.91,0.71)
    Cl(0.5, 0.5)C(0.75, 0.5)
    O(0.61, 0.50)
    O(0.75, 0.22)
    O(0.89, 0.78)
    LayerAl(0.5, 0.5)
    H(0.64, 0.64)
    H(0.96, 0.65)
    Al(0.5, 0.5)Al(0.75, 0.5)
    H(0.53, 0.34)
    H(0.68, 0.03)
    H(0.81, 0.62)
    下載: 導出CSV

    表  3  LDH-NO2、LDH-Cl、LDH-CO3的Mulliken電荷布居

    Table  3.   Atomic populations of LDH-NO2, DH-Cl, and LDH-CO3

    SpeciesZn/eAl/eO/eH (far from anion)/eH (near anion)/eAnion
    (inter)/e
    Layer1.1601.750?0.9300.410
    LDH-NO21.0701.710?0.9350.41750.375?0.670
    LDH-Cl1.0701.710?0.9330.4200.360?0.670
    LDH-CO31.1071.715?0.9300.4130.400?1.59
    下載: 導出CSV

    表  4  LDH-NO2和Cl?$ {\text{CO}}_3^{2 - } $發生離子交換反應所涉及的各物相的總能  

    Table  4.   Thermodynamic potentials for species involved in the ions exchange reaction of LDH-NO2 with Cl? and $ {\text{CO}}_3^{2 - } $

    SpeciesThermodynamic Potentials/eVSpeciesThermodynamic Potentials/eV
    $ {\text{NO}}_2^ - $?1148.29LDH-NO2?7561.55
    Cl??426.37LDH-Cl?6851.32
    $ {\text{CO}}_3^{2 - } $?1451.21LDH-CO3?7164.32
    下載: 導出CSV

    表  5  碳鋼鋼筋在含不同阻銹劑環境中的交流阻抗譜擬合值

    Table  5.   Fitting data for the electrochemical impedance spectrum of carbon steel reinforcement in the simulated concrete pore solution with different inhibitors

    InhibitorsDosage /
    (g·L? 1)
    Rs /
    (Ω·cm2)
    Qc /
    (${ {\text{Ω} }^{ - 1} } \cdot {\text{c} }{ {\text{m} }^{ - 2} } \cdot { {\text{s} }^{ {n_{\text{c} } } } }$)
    ncRc /
    (Ω·cm2)
    Qf /
    (${ {{\Omega } }^{ - 1} } \cdot {\text{c} }{ {\text{m} }^{ - 2} } \cdot { {\text{s} }^{ {n_{\text{f} } } }}$)
    nfRf /
    (Ω·cm2)
    Blank0223.82×10? 40.85181.37×10? 40.951170
    LDH-NO21212.81×10? 40.841211.93×10? 40.891603
    5207.95×10? 50.89545.15×10? 50.886999
    10201.24×10? 40.82611.93×10? 50.9111995
    NaNO20.108313.12×10? 40.7817889.49×10? 30.95518
    0.540451.36×10? 40.8422908.85×10? 40.642851
    1.080261.05×10? 40.8651604.24×10? 40.728139
    LDH-NO31231.29×10? 40.92191.62×10? 40.911104
    5221.23×10? 40.90171.90×10? 40.891169
    10191.46×10? 40.88251.73×10? 40.871583
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhang R H, Ai Y J, Lu Z H. Application of multifunctional layered double hydroxides for removing environmental pollutants: Recent experimental and theoretical progress. J Environ Chem Eng, 2020, 8(4): 103908 doi: 10.1016/j.jece.2020.103908
    [2] Liu J, Zhang Y H, Huang Z A, et al. Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide. Chin J Eng, 2021, 43(8): 1064

    劉佳, 張英華, 黃志安, 等. 三維ZnO/CdS/NiFe層狀雙金屬氫氧化物光電催化氧化甲烷. 工程科學學報, 2021, 43(8):1064
    [3] Cao Y H, Dong S G, Zheng D J, et al. Multifunctional inhibition based on layered double hydroxides to comprehensively control corrosion of carbon steel in concrete. Corros Sci, 2017, 126: 166 doi: 10.1016/j.corsci.2017.06.026
    [4] Tian Y W, Wen C, Wang G, et al. Inhibiting property of nitrite intercalated layered double hydroxide for steel reinforcement in contaminated concrete condition. J Appl Electrochem, 2020, 50(8): 835 doi: 10.1007/s10800-020-01439-8
    [5] Tian Y W, Dong C F, Wang G, et al. Zn-Al-NO2 layered double hydroxide as a controlled-release corrosion inhibitor for steel reinforcements. Mater Lett, 2019, 236: 517 doi: 10.1016/j.matlet.2018.10.177
    [6] Su Y, Qiu S, Yang D, et al. Active anti-corrosion of epoxy coating by nitrite ions intercalated MgAl LDH. J Hazard Mater, 2020, 391: 122215 doi: 10.1016/j.jhazmat.2020.122215
    [7] Xu J X, Wei J F, Ma G X, et al. Effect of MgAl-NO2 LDHs inhibitor on steel corrosion in chloride-free and contaminated simulated carbonated concrete pore solutions. Corros Sci, 2020, 176: 108940 doi: 10.1016/j.corsci.2020.108940
    [8] Xu J X, Tan Q P, Mei Y J. Corrosion protection of steel by Mg-Al layered double hydroxides in simulated concrete pore solution: Effect of SO42-. Corros Sci, 2020, 163: 108223 doi: 10.1016/j.corsci.2019.108223
    [9] Zuo J D, Wu B, Luo C Y, et al. Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution. Corros Sci, 2019, 152: 120 doi: 10.1016/j.corsci.2019.03.007
    [10] Zou Y D, Liu Y, Wang X X, et al. Glycerol-modified binary layered double hydroxide nanocomposites for uranium immobilization via extended X-ray absorption fine structure technique and density functional theory calculation. ACS Sustain Chem Eng, 2017, 5(4): 3583 doi: 10.1021/acssuschemeng.7b00439
    [11] Yu S J, Wang X X, Liu Y F, et al. Efficient removal of uranium(VI) by layered double hydroxides supported nanoscale zero-valent iron: A combined experimental and spectroscopic studies. Chem Eng J, 2019, 365: 51 doi: 10.1016/j.cej.2019.02.024
    [12] Lyu F Y, Yu H Q, Hou T L, et al. Efficient and fast removal of Pb2+ and Cd2+ from an aqueous solution using a chitosan/Mg-Al-layered double hydroxide nanocomposite. J Colloid Interface Sci, 2019, 539: 184 doi: 10.1016/j.jcis.2018.12.049
    [13] Zou Y D, Wang X X, Ai Y J, et al. Coagulation behavior of graphene oxide on nanocrystallined Mg/Al layered double hydroxides: Batch experimental and theoretical calculation study. Environ Sci Technol, 2016, 50(7): 3658 doi: 10.1021/acs.est.6b00255
    [14] Yao W, Wang X X, Liang Y, et al. Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and 241Am(III) efficient removal: Batch and EXAFS studies. Chem Eng J, 2018, 332: 775 doi: 10.1016/j.cej.2017.09.011
    [15] Moraes P I R, Tavares S R, Vaiss V S, et al. Investigation on sustainable phosphate release in agriculture: Structural and thermodynamic study of stability, dehydration and anionic exchange of Mg-Al-HPO4 layered double hydroxide by DFT calculations. Appl Clay Sci, 2018, 162: 428 doi: 10.1016/j.clay.2018.06.036
    [16] Xu P Z, Zhou J, Li G G, et al. Corrosion inhibition efficiency of compound nitrite with D-sodium gluconate on carbon steel in simulated concrete pore solution. Constr Build Mater, 2021, 288: 123101 doi: 10.1016/j.conbuildmat.2021.123101
    [17] Shi J J, Sun W, Geng G Q. Steel corrosion in simulated concrete pore solutions using a galvanostatic pulse method. J Univ Sci Technol Beijing, 2011, 33(6): 727

    施錦杰, 孫偉, 耿國慶. 恒電流脈沖法研究鋼筋在模擬混凝土孔溶液中的腐蝕行為. 北京科技大學學報, 2011, 33(6):727
    [18] Prasad N K, Pathak A S, Kundu S, et al. On the novel approach of sacrificial cathodic protection of mild steel in simulated concrete pore solution and concrete mortar by high phosphorus pig iron anodes. J Mater Res Technol, 2021, 14: 582 doi: 10.1016/j.jmrt.2021.06.070
    [19] Shi J J, Wu M, Ming J. Degradation effect of carbonation on electrochemical behavior of 2304 duplex stainless steel in simulated concrete pore solutions. Corros Sci, 2020, 177: 109006 doi: 10.1016/j.corsci.2020.109006
    [20] Radha A V, Kamath P V, Shivakumara C. Conservation of order, disorder, and “crystallinity” during anion-exchange reactions among layered double hydroxides (LDHs) of Zn with Al. J Phys Chem B, 2007, 111(13): 3411 doi: 10.1021/jp0684170
    [21] Xu Q, Ni Z M, Mao J H. First principles study of microscopic structures and layer-anion interactions in layered double hydroxides intercalated various univalent anions. J Mol Struct Theochem, 2009, 915(1-3): 122 doi: 10.1016/j.theochem.2009.08.033
    [22] Costa D G, Rocha A B, Souza W F, et al. Ab initio simulation of changes in geometry, electronic structure, and Gibbs free energy caused by dehydration of hydrotalcites containing Cl?and CO32?counteranions. J Phys Chem B, 2011, 115(13): 3531 doi: 10.1021/jp110668s
    [23] Li G L, Wang Y T, Guo H, et al. Direct plasma phosphorization of Cu foam for Li ion batteries. J Mater Chem A, 2020, 8(33): 16920 doi: 10.1039/D0TA02512G
    [24] Liu P F, Zhang Y P, Liu S Q, et al. Fabrication of superhydrophobic marigold shape LDH films on stainless steel meshes via in situ growth for enhanced anti-corrosion and high efficiency oil-water separation. Appl Clay Sci, 2019, 182: 105292 doi: 10.1016/j.clay.2019.105292
    [25] Steed J W, Turner D R, Wallace K. Core Concepts in Supramolecular Chemistry and Nanochemistry. England: John Wiley and Sons Ltd, 2007
    [26] Dong L J, Li S B, Jin Y F, et al. Enhanced adsorption of Eu(III) from wastewater using solidago canadensis-derived biochar functionalized by Ca/Al-LDH and hydroxyapatite. Appl Surf Sci, 2021, 567: 150794 doi: 10.1016/j.apsusc.2021.150794
    [27] Kumari P, Pal B, Das R K. Superior adsorptive removal of eco-toxic drug diclofenac sodium by Zn-Al LDH·xBi2O3 layer double hydroxide composites. Appl Clay Sci, 2021, 208: 106119 doi: 10.1016/j.clay.2021.106119
    [28] Zhou X C, Mu S, Ma Q, et al. Accelerated evaluation of organic steel corrosion inhibitor in simulated pore solution of concrete and its equivalence analysis. J Chin Ceram Soc, 2021, 49(8): 1713

    周霄騁, 穆松, 馬麒, 等. 混凝土模擬孔溶液中有機鋼筋阻銹劑的加速評價及等效性分析. 硅酸鹽學報, 2021, 49(8):1713
    [29] Li L, Dong C F, Gao S J, et al. Pitting corrosion of 304 L stainless steel welds in simulated concrete pore solutions. Chin J Eng, 2015, 37(9): 1165

    栗麗, 董超芳, 高書君, 等. 304L不銹鋼焊縫在混凝土模擬孔隙液中的點蝕行為. 工程科學學報, 2015, 37(9):1165
    [30] Frontini M A, Sanchez A G, Guidoni G M, et al. Characterization of surface films on constructional steel in carbonated media containing chloride and nitrite ions. Electrochimica Acta, 2020, 364: 137296 doi: 10.1016/j.electacta.2020.137296
  • 加載中
圖(10) / 表(5)
計量
  • 文章訪問數:  560
  • HTML全文瀏覽量:  287
  • PDF下載量:  39
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-08-01
  • 網絡出版日期:  2021-09-28
  • 刊出日期:  2022-07-06

目錄

    /

    返回文章
    返回