Controlled release mechanism and inhibition performance of smart inhibitor LDH-NO2 in the reinforced concrete structures
-
摘要: 為解決傳統阻銹劑過早失活、過量投放的問題,研究了一種具有控釋、長效、靶向特征的智能阻銹劑LDH-NO2。采用第一性原理計算、物理檢測技術、浸泡實驗和電化學方法研究了智能阻銹劑LDH-NO2的微觀和宏觀控釋規律及緩蝕行為。結果表明:(1) 在氯離子侵蝕或碳化的混凝土環境中,LDH-NO2中的
$ {\text{NO}}_2^ - $ 可快速、自發釋放,1 h內達到釋放平衡,從而及時修復鋼筋的腐蝕損傷;(2) LDH-NO2對碳化環境比氯離子環境更加敏感,其與$ {\text{CO}}_3^{2 - } $ 發生離子交換反應的化學能更大,反應產物的層間距更小、層間作用力更強、穩定性更好;(3) 含氯碳化混凝土環境中,5 g·L?1 LDH-NO2對碳鋼鋼筋的緩蝕效率約99%,使碳鋼鋼筋腐蝕速率下降一個數量級;(4) 相較于傳統阻銹劑NaNO2,智能阻銹劑LDH-NO2可有效延長碳鋼鋼筋的腐蝕起始時間、減少其腐蝕面積、降低其腐蝕程度;(5) LDH-NO2的緩蝕性能主要源于LDH對$ {\text{NO}}_2^ - $ 的釋放,而非其對腐蝕性離子的吸附。因此,智能阻銹劑LDH-NO2在鋼筋混凝環境中具有優異的緩蝕性能和長效性。Abstract: Reinforcement corrosion is one of the most serious problems limiting the durability of concrete structures. Corrosion inhibitors are used as admixtures in the fresh concrete to prolong the service life of the concrete structure, and calcium nitrite is the most extensively tested admixed inhibitor. However, the premature deactivation and overdose of conventional inhibitors limit their application, and one strategy to solve this problem is to use smart inhibitors with controlled release, long-term effects, and targeting performance. In this paper, a smart inhibitor of LDH-NO2 was prepared based on the Zn?Al layered double hydroxide as a shell and the nitrite ions as a core. The first principles calculation, physical detection techniques, immersion test, and electrochemical methods were performed to study the micro- and macro-controlled release mechanism and inhibition property of LDH-NO2. The results show that: (1) The nitrites in LDH-NO2 can release spontaneously in the chloride-contaminated or/and carbonated concrete. The release process reaches equilibrium in 1 h, repairing the corrosion damage of steel reinforcement in time. (2) The LDH-NO2 is much more sensitive in the carbonated concrete than chloride-included concrete, reflected in the greater energy of ion-exchange reaction and the more stable product with thinner interlayer with stronger interlayer force. (3) In the simulated pore solution of chloride-contaminated and carbonated concrete, the corrosion inhibition efficiency of 5 g·L?1 LDH-NO2 on carbon steel reinforcement exceeds 99%, reducing the corrosion rate of carbon steel by one order of magnitude. (4) Compared with the conventional NaNO2 inhibitor, LDH-NO2 effectively prolongs the corrosion initiation time while decreasing the corrosion area of carbon steel reinforcement. (5) The corrosion inhibition performance of LDH-NO2 is mainly due to the release of$ {\text{NO}}_2^ - $ from LDH rather than the corrosive ion adsorption on LDH. Therefore, the smart inhibitor of LDH-NO2 shows excellent corrosion inhibition and a long-term effect in the reinforced concrete environment. -
圖 1 LDHs主體結構的構建.(a) 3R1構型的Zn2Al1(OH)6(NO2)1超胞側視圖;(b) Zn(OH)2的(3×2×1)超胞的俯視圖及其中的(1×1)和(
$\sqrt 3$ ×$\sqrt 3 $ )R30°構型;(c)$ {\text{Zn}}_{2}{\text{Al}}_{1}(\text{OH}{)}_{6}^{\text{+}} $ 單胞的俯視圖Figure 1. Structure of LDHs: (a) left view of the Zn2Al1(OH)6(NO2)1 supercell with 3R1 structure; (b) top view of the (3×2×1) supercell of Zn(OH)2 with 3R1 structure; (c) top view of the Zn2Al1(OH)6+ primitive cell
圖 8 碳鋼鋼筋在含0.17 mol·L?1 NaCl和0.1 mol·L?1 NaHCO3(pH值11.5)的混凝土模擬液中浸泡16 d后的腐蝕結果. (a)腐蝕起始時間和腐蝕面積;(b)腐蝕形貌
Figure 8. Corrosion behavior of the carbon steel reinforcement after 16 d of immersion in the concrete simulation solution with 0.17 mol·L?1 NaCl and 0.1 mol·L?1 NaHCO3 (pH value of11.5): (a) corrosion initiation time and mass loss; (b) corrosion morphology
圖 9 碳鋼鋼筋在含0.17 mol·L?1 NaCl和0.1 mol·L?1 NaHCO3(pH值11.5)的混凝土模擬液中浸泡1 h后的Nyquist圖和Bode圖:(a, b)添加LDH-NO2阻銹劑;(c, d)添加NaNO2阻銹劑;(e, f)添加LDH-NO3阻銹劑
Figure 9. Nyquist plots and Bode plots of carbon steel reinforcement after 1 h of immersion in the concrete simulation solution with 0.17 mol·L?1 NaCl and 0.1 mol·L?1 NaHCO3 (pH value of 11.5): (a–b) adding LDH-NO2 inhibitor; (c–d) adding NaNO2 inhibitor; (e–f) adding LDH-NO3 inhibitor
表 1 LDH-NO2、LDH-Cl、LDH-CO3的主要結構參數
Table 1. Main geometrical parameters for hydrotalcites LDH-NO2, LDH-Cl, and LDH-CO3
Species Methods Lattice constant/nm Bond distance/nm Bond angle/(°) a=b c Metal-O O?H A?H* A?O** C?O N?O O?C?O O?N?O LDH-NO2 Calculation 0.3118 2.3939 0.2025 0.0985 0.1716 0.3158 — 0.1261 — 119.041 LDH-Cl Calculation 0.3118 2.3686 0.2062 0.0982 0.2056 0.2988 — — — — Experiment 0.3081 2.3351 0.2054 — — 0.2992 — — — — LDH-CO3 Calculation 0.3118 2.2284 0.2026 0.098 — 0.2814 0.1469 — 120 — Experiment 0.3074 2.2743 0.2034 — — — 0.1170 — 120.01 — Note: * represents the bond length between the interlayer anion and the H atom of the LDH layer;** is the bond length between the interlayer anion and the O atom of the LDH layer. 表 2 LDH-NO2、LDH-Cl、LDH-CO3層間空間中各原子的分數坐標
Table 2. Fractional coordinates of atoms in the interlayer spaces for hydrotalcites LDH-NO2, LDH-Cl, and LDH-CO3
Atomic positions LDH-NO2 LDH-Cl LDH-CO3 Interlayer N(0.62, 0.55)
O(0.48,0.51)
O(0.91,0.71)Cl(0.5, 0.5) C(0.75, 0.5)
O(0.61, 0.50)
O(0.75, 0.22)
O(0.89, 0.78)Layer Al(0.5, 0.5)
H(0.64, 0.64)
H(0.96, 0.65)Al(0.5, 0.5) Al(0.75, 0.5)
H(0.53, 0.34)
H(0.68, 0.03)
H(0.81, 0.62)表 3 LDH-NO2、LDH-Cl、LDH-CO3的Mulliken電荷布居
Table 3. Atomic populations of LDH-NO2, DH-Cl, and LDH-CO3
Species Zn/e Al/e O/e H (far from anion)/e H (near anion)/e Anion
(inter)/eLayer 1.160 1.750 ?0.930 0.410 — — LDH-NO2 1.070 1.710 ?0.935 0.4175 0.375 ?0.670 LDH-Cl 1.070 1.710 ?0.933 0.420 0.360 ?0.670 LDH-CO3 1.107 1.715 ?0.930 0.413 0.400 ?1.59 表 4 LDH-NO2和Cl?、
$ {\text{CO}}_3^{2 - } $ 發生離子交換反應所涉及的各物相的總能Table 4. Thermodynamic potentials for species involved in the ions exchange reaction of LDH-NO2 with Cl? and
$ {\text{CO}}_3^{2 - } $ Species Thermodynamic Potentials/eV Species Thermodynamic Potentials/eV $ {\text{NO}}_2^ - $ ?1148.29 LDH-NO2 ?7561.55 Cl? ?426.37 LDH-Cl ?6851.32 $ {\text{CO}}_3^{2 - } $ ?1451.21 LDH-CO3 ?7164.32 表 5 碳鋼鋼筋在含不同阻銹劑環境中的交流阻抗譜擬合值
Table 5. Fitting data for the electrochemical impedance spectrum of carbon steel reinforcement in the simulated concrete pore solution with different inhibitors
Inhibitors Dosage /
(g·L? 1)Rs /
(Ω·cm2)Qc /
(${ {\text{Ω} }^{ - 1} } \cdot {\text{c} }{ {\text{m} }^{ - 2} } \cdot { {\text{s} }^{ {n_{\text{c} } } } }$)nc Rc /
(Ω·cm2)Qf /
(${ {{\Omega } }^{ - 1} } \cdot {\text{c} }{ {\text{m} }^{ - 2} } \cdot { {\text{s} }^{ {n_{\text{f} } } }}$)nf Rf /
(Ω·cm2)Blank 0 22 3.82×10? 4 0.85 18 1.37×10? 4 0.95 1170 LDH-NO2 1 21 2.81×10? 4 0.84 121 1.93×10? 4 0.89 1603 5 20 7.95×10? 5 0.89 54 5.15×10? 5 0.88 6999 10 20 1.24×10? 4 0.82 61 1.93×10? 5 0.91 11995 NaNO2 0.108 31 3.12×10? 4 0.78 1788 9.49×10? 3 0.95 518 0.540 45 1.36×10? 4 0.84 2290 8.85×10? 4 0.64 2851 1.080 26 1.05×10? 4 0.86 5160 4.24×10? 4 0.72 8139 LDH-NO3 1 23 1.29×10? 4 0.92 19 1.62×10? 4 0.91 1104 5 22 1.23×10? 4 0.90 17 1.90×10? 4 0.89 1169 10 19 1.46×10? 4 0.88 25 1.73×10? 4 0.87 1583 www.77susu.com -
參考文獻
[1] Zhang R H, Ai Y J, Lu Z H. Application of multifunctional layered double hydroxides for removing environmental pollutants: Recent experimental and theoretical progress. J Environ Chem Eng, 2020, 8(4): 103908 doi: 10.1016/j.jece.2020.103908 [2] Liu J, Zhang Y H, Huang Z A, et al. Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide. Chin J Eng, 2021, 43(8): 1064劉佳, 張英華, 黃志安, 等. 三維ZnO/CdS/NiFe層狀雙金屬氫氧化物光電催化氧化甲烷. 工程科學學報, 2021, 43(8):1064 [3] Cao Y H, Dong S G, Zheng D J, et al. Multifunctional inhibition based on layered double hydroxides to comprehensively control corrosion of carbon steel in concrete. Corros Sci, 2017, 126: 166 doi: 10.1016/j.corsci.2017.06.026 [4] Tian Y W, Wen C, Wang G, et al. Inhibiting property of nitrite intercalated layered double hydroxide for steel reinforcement in contaminated concrete condition. J Appl Electrochem, 2020, 50(8): 835 doi: 10.1007/s10800-020-01439-8 [5] Tian Y W, Dong C F, Wang G, et al. Zn-Al-NO2 layered double hydroxide as a controlled-release corrosion inhibitor for steel reinforcements. Mater Lett, 2019, 236: 517 doi: 10.1016/j.matlet.2018.10.177 [6] Su Y, Qiu S, Yang D, et al. Active anti-corrosion of epoxy coating by nitrite ions intercalated MgAl LDH. J Hazard Mater, 2020, 391: 122215 doi: 10.1016/j.jhazmat.2020.122215 [7] Xu J X, Wei J F, Ma G X, et al. Effect of MgAl-NO2 LDHs inhibitor on steel corrosion in chloride-free and contaminated simulated carbonated concrete pore solutions. Corros Sci, 2020, 176: 108940 doi: 10.1016/j.corsci.2020.108940 [8] Xu J X, Tan Q P, Mei Y J. Corrosion protection of steel by Mg-Al layered double hydroxides in simulated concrete pore solution: Effect of SO42-. Corros Sci, 2020, 163: 108223 doi: 10.1016/j.corsci.2019.108223 [9] Zuo J D, Wu B, Luo C Y, et al. Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution. Corros Sci, 2019, 152: 120 doi: 10.1016/j.corsci.2019.03.007 [10] Zou Y D, Liu Y, Wang X X, et al. Glycerol-modified binary layered double hydroxide nanocomposites for uranium immobilization via extended X-ray absorption fine structure technique and density functional theory calculation. ACS Sustain Chem Eng, 2017, 5(4): 3583 doi: 10.1021/acssuschemeng.7b00439 [11] Yu S J, Wang X X, Liu Y F, et al. Efficient removal of uranium(VI) by layered double hydroxides supported nanoscale zero-valent iron: A combined experimental and spectroscopic studies. Chem Eng J, 2019, 365: 51 doi: 10.1016/j.cej.2019.02.024 [12] Lyu F Y, Yu H Q, Hou T L, et al. Efficient and fast removal of Pb2+ and Cd2+ from an aqueous solution using a chitosan/Mg-Al-layered double hydroxide nanocomposite. J Colloid Interface Sci, 2019, 539: 184 doi: 10.1016/j.jcis.2018.12.049 [13] Zou Y D, Wang X X, Ai Y J, et al. Coagulation behavior of graphene oxide on nanocrystallined Mg/Al layered double hydroxides: Batch experimental and theoretical calculation study. Environ Sci Technol, 2016, 50(7): 3658 doi: 10.1021/acs.est.6b00255 [14] Yao W, Wang X X, Liang Y, et al. Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and 241Am(III) efficient removal: Batch and EXAFS studies. Chem Eng J, 2018, 332: 775 doi: 10.1016/j.cej.2017.09.011 [15] Moraes P I R, Tavares S R, Vaiss V S, et al. Investigation on sustainable phosphate release in agriculture: Structural and thermodynamic study of stability, dehydration and anionic exchange of Mg-Al-HPO4 layered double hydroxide by DFT calculations. Appl Clay Sci, 2018, 162: 428 doi: 10.1016/j.clay.2018.06.036 [16] Xu P Z, Zhou J, Li G G, et al. Corrosion inhibition efficiency of compound nitrite with D-sodium gluconate on carbon steel in simulated concrete pore solution. Constr Build Mater, 2021, 288: 123101 doi: 10.1016/j.conbuildmat.2021.123101 [17] Shi J J, Sun W, Geng G Q. Steel corrosion in simulated concrete pore solutions using a galvanostatic pulse method. J Univ Sci Technol Beijing, 2011, 33(6): 727施錦杰, 孫偉, 耿國慶. 恒電流脈沖法研究鋼筋在模擬混凝土孔溶液中的腐蝕行為. 北京科技大學學報, 2011, 33(6):727 [18] Prasad N K, Pathak A S, Kundu S, et al. On the novel approach of sacrificial cathodic protection of mild steel in simulated concrete pore solution and concrete mortar by high phosphorus pig iron anodes. J Mater Res Technol, 2021, 14: 582 doi: 10.1016/j.jmrt.2021.06.070 [19] Shi J J, Wu M, Ming J. Degradation effect of carbonation on electrochemical behavior of 2304 duplex stainless steel in simulated concrete pore solutions. Corros Sci, 2020, 177: 109006 doi: 10.1016/j.corsci.2020.109006 [20] Radha A V, Kamath P V, Shivakumara C. Conservation of order, disorder, and “crystallinity” during anion-exchange reactions among layered double hydroxides (LDHs) of Zn with Al. J Phys Chem B, 2007, 111(13): 3411 doi: 10.1021/jp0684170 [21] Xu Q, Ni Z M, Mao J H. First principles study of microscopic structures and layer-anion interactions in layered double hydroxides intercalated various univalent anions. J Mol Struct Theochem, 2009, 915(1-3): 122 doi: 10.1016/j.theochem.2009.08.033 [22] Costa D G, Rocha A B, Souza W F, et al. Ab initio simulation of changes in geometry, electronic structure, and Gibbs free energy caused by dehydration of hydrotalcites containing Cl?and CO32?counteranions. J Phys Chem B, 2011, 115(13): 3531 doi: 10.1021/jp110668s [23] Li G L, Wang Y T, Guo H, et al. Direct plasma phosphorization of Cu foam for Li ion batteries. J Mater Chem A, 2020, 8(33): 16920 doi: 10.1039/D0TA02512G [24] Liu P F, Zhang Y P, Liu S Q, et al. Fabrication of superhydrophobic marigold shape LDH films on stainless steel meshes via in situ growth for enhanced anti-corrosion and high efficiency oil-water separation. Appl Clay Sci, 2019, 182: 105292 doi: 10.1016/j.clay.2019.105292 [25] Steed J W, Turner D R, Wallace K. Core Concepts in Supramolecular Chemistry and Nanochemistry. England: John Wiley and Sons Ltd, 2007 [26] Dong L J, Li S B, Jin Y F, et al. Enhanced adsorption of Eu(III) from wastewater using solidago canadensis-derived biochar functionalized by Ca/Al-LDH and hydroxyapatite. Appl Surf Sci, 2021, 567: 150794 doi: 10.1016/j.apsusc.2021.150794 [27] Kumari P, Pal B, Das R K. Superior adsorptive removal of eco-toxic drug diclofenac sodium by Zn-Al LDH·xBi2O3 layer double hydroxide composites. Appl Clay Sci, 2021, 208: 106119 doi: 10.1016/j.clay.2021.106119 [28] Zhou X C, Mu S, Ma Q, et al. Accelerated evaluation of organic steel corrosion inhibitor in simulated pore solution of concrete and its equivalence analysis. J Chin Ceram Soc, 2021, 49(8): 1713周霄騁, 穆松, 馬麒, 等. 混凝土模擬孔溶液中有機鋼筋阻銹劑的加速評價及等效性分析. 硅酸鹽學報, 2021, 49(8):1713 [29] Li L, Dong C F, Gao S J, et al. Pitting corrosion of 304 L stainless steel welds in simulated concrete pore solutions. Chin J Eng, 2015, 37(9): 1165栗麗, 董超芳, 高書君, 等. 304L不銹鋼焊縫在混凝土模擬孔隙液中的點蝕行為. 工程科學學報, 2015, 37(9):1165 [30] Frontini M A, Sanchez A G, Guidoni G M, et al. Characterization of surface films on constructional steel in carbonated media containing chloride and nitrite ions. Electrochimica Acta, 2020, 364: 137296 doi: 10.1016/j.electacta.2020.137296 -