<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鋼鐵行業低碳技術應用現狀與展望

邢奕 崔永康 田京雷 蘇偉 王偉麗 張熙 劉義 趙秀娟

邢奕, 崔永康, 田京雷, 蘇偉, 王偉麗, 張熙, 劉義, 趙秀娟. 鋼鐵行業低碳技術應用現狀與展望[J]. 工程科學學報, 2022, 44(4): 801-811. doi: 10.13374/j.issn2095-9389.2021.08.01.001
引用本文: 邢奕, 崔永康, 田京雷, 蘇偉, 王偉麗, 張熙, 劉義, 趙秀娟. 鋼鐵行業低碳技術應用現狀與展望[J]. 工程科學學報, 2022, 44(4): 801-811. doi: 10.13374/j.issn2095-9389.2021.08.01.001
XING Yi, CUI Yong-kang, TIAN Jing-lei, SU Wei, WANG Wei-li, ZHANG Xi, LIU Yi, ZHAO Xiu-juan. Application status and prospect of low carbon technology in iron and steel industry[J]. Chinese Journal of Engineering, 2022, 44(4): 801-811. doi: 10.13374/j.issn2095-9389.2021.08.01.001
Citation: XING Yi, CUI Yong-kang, TIAN Jing-lei, SU Wei, WANG Wei-li, ZHANG Xi, LIU Yi, ZHAO Xiu-juan. Application status and prospect of low carbon technology in iron and steel industry[J]. Chinese Journal of Engineering, 2022, 44(4): 801-811. doi: 10.13374/j.issn2095-9389.2021.08.01.001

鋼鐵行業低碳技術應用現狀與展望

doi: 10.13374/j.issn2095-9389.2021.08.01.001
基金項目: 國家自然科學基金資助項目(51770438)
詳細信息
    通訊作者:

    E-mail:suwei3007@163.com

  • 中圖分類號: X511

Application status and prospect of low carbon technology in iron and steel industry

More Information
  • 摘要: 在總結了國外低碳排放項目和國內各大鋼企的碳達峰與碳中和的技術節點和低碳技術手段的基礎之上,從碳減排、碳零排和碳負排三個層次劃分梳理當今鋼鐵行業的眾多低碳技術,并對各個低碳技術的碳排放削減量、成熟度和推廣時間進行歸納。在碳減排方面,通過優化工藝和流程再造減少鋼鐵行業生產過程中的二氧化碳排放,如高爐爐頂煤氣循環技術;在碳零排方面,利用氫氣或清潔電能減少或者替代高二氧化碳排放因子煤炭/焦炭的使用,從源頭上降低二氧化碳的排放,如氫冶金技術;在碳負排方面,主要從高碳排放強度高爐煉鐵工序進行二氧化碳捕集,分別在鋼廠內進行自身綠色循環利用和在廠外進行化工聯產制造高附加值化工產品(如甲醇乙醇等),對靠近油田的鋼材實施二氧化碳地質封存,在末端上降低二氧化碳的排放。

     

  • 圖  1  鋼鐵碳中和技術路徑分析

    Figure  1.  Path analysis of steel carbon neutralization technology

    圖  2  氧氣鼓吹高爐爐頂煤氣循環工藝

    Figure  2.  Oxygen blowing blast furnace top gas circulation process

    圖  3  Consteel 電弧爐

    Figure  3.  Consteel electric arc furnace

    圖  4  直接還原煉鐵技術

    Figure  4.  Direct reduction ironmaking technology

    圖  5  富氫高爐氫冶金技術

    Figure  5.  Hydrogen metallurgical technology of hydrogen-rich blast furnace

    圖  6  CO2在鋼鐵各工序中的應用[24]

    Figure  6.  Application of CO2 in various processes of iron and steel [24]

    圖  7  發酵法工藝流程圖

    Figure  7.  Process flow diagram of the fermentation method

    圖  8  DMTE生產乙醇技術路線圖

    Figure  8.  Dimethyltellurium technology roadmap for ethanol production

    表  1  物理吸附與化學吸收方法捕集CO2比較

    Table  1.   Comparison of CO2 capture by the physical adsorption and chemical absorption methods

    Capture technologyRepresentative methodCommon materialsAdvantagesDisadvantages
    Physical methodPressure swing adsorption13X molecular sieve1. Low energy consumption
    2. Mature technology and flexible operation
    3. No corrosive problem
    4. Suitable for high concentration CO2
    1. The flue gas needs to be cooled and dewatered before adsorption
    2. The capture efficiency is low and there is a lack of high capture performance materials
    Chemical methodLiquid amine absorptionAlkane alcohol amine solution, amino acid salt solution1. Suitable for low concentration and large flow flue gas
    2. High absorption efficiency
    1. The absorbent is easy to evaporate and lose
    2. The regeneration energy consumption is high
    3. The absorption liquid easily corrodes the equipment
    4. The solution circulation is large and the area occupied by the absorption tower and regeneration tower is large
    OthersCarbonization reactionCalcium-based materials1. Wide sources of calcium oxide
    2. Low price
    3. Carbonated products can be used as road materials
    1. Low capture efficiency
    2. Poor sintering resistance and cannot be recycled many times
    3. High regeneration energy consumption
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] National Bureau of Statistics. Statistical communiqué of the People’s Republic of China on the 2020 national economic and social development. China Stat, 2021(3): 8

    國家統計局. 中華人民共和國2020年國民經濟和社會發展統計公報. 中國統計, 2021(3):8
    [2] Bui M, Adjiman C S, Bardow A, et al. Carbon capture and storage (CCS): The way forward. Energy Environ Sci, 2018, 11(5): 1062 doi: 10.1039/C7EE02342A
    [3] Zhang X Y, Jiao K X, Zhang J L, et al. A review on low carbon emissions projects of steel industry in the World. J Clean Prod, 2021, 306: 127259 doi: 10.1016/j.jclepro.2021.127259
    [4] Quader M A, Ahmed S, Ghazilla R A R, et al. A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renewable Sustainable Energy Rev, 2015, 50: 594 doi: 10.1016/j.rser.2015.05.026
    [5] Yan J J. Progress and future of ultra-low CO2 steel making program. China Metall, 2017, 27(2): 6

    嚴珺潔. 超低二氧化碳排放煉鋼項目的進展與未來. 中國冶金, 2017, 27(2):6
    [6] Wang G, Wang J S, Zuo H B, et al. Effect of blast furnace gas recycling with hydrogen injection on low carbon development of Chinese ironmaking. China Metall, 2019, 29(10): 1

    王廣, 王靜松, 左海濱, 等. 高爐煤氣循環耦合富氫對中國煉鐵低碳發展的意義. 中國冶金, 2019, 29(10):1
    [7] Xue Q G, Yang F, Zhang X X, et al. Development of oxygen blast furnace and its research progress in Beijing University of science and technology. Chin J Eng, 2021, 43(12): 1577

    薛慶國, 楊帆, 張欣欣, 等. 氧氣高爐的發展歷程及其在北京科技大學的研究進展. 工程科學學報, 2021, 43(12):1577
    [8] Yao C L, Zhu H C, Jiang Z H, et al. CO2 emissions calculation and analysis of electric arc furnace with continuous feeding of only scrap. J Mater Metall, 2020, 19(4): 259

    姚聰林, 朱紅春, 姜周華, 等. 全廢鋼連續加料電弧爐短流程碳排放計算及分析. 材料與冶金學報, 2020, 19(4):259
    [9] Cheng W. The EAF market and the continuous casting and rolling of long products. Metall Econ Manage, 2020(1): 22

    程威. 中國電爐市場與長材連鑄連軋. 冶金經濟與管理, 2020(1):22
    [10] Ruan Q H, Bai M M. Comparison of my country’s long-process steelmaking and short-process steelmaking costs. China Steel, 2019(10): 58 doi: 10.3969/j.issn.1672-5115.2019.10.018

    阮清華, 白苗苗. 我國長流程煉鋼與短流程煉鋼成本比較. 中國鋼鐵業, 2019(10):58 doi: 10.3969/j.issn.1672-5115.2019.10.018
    [11] Wang X J. Technological progress of EAF steelmaking in China. Iron Steel, 2019, 54(8): 1

    王新江. 中國電爐煉鋼的技術進步. 鋼鐵, 2019, 54(8):1
    [12] Jiang Z H, Yao C L, Zhu H C, et al. Technology development trend in electric arc furnace steelmaking. Iron Steel, 2020, 55(7): 1

    姜周華, 姚聰林, 朱紅春, 等. 電弧爐煉鋼技術的發展趨勢. 鋼鐵, 2020, 55(7):1
    [13] Li B. Fundamental Study on the Smelting High-Purity Iron and High-Purity Bearing Steel Using Direct Reduced Iron Prepared by Hydrogen [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

    李彬. 基于氫氣直接還原鐵冶煉高純鐵和高純軸承鋼的基礎研究[學位論文]. 北京: 北京科技大學, 2020
    [14] Zhou X. Overview and development analysis of direct reduction process. Metall Econ Manage, 2017(4): 53 doi: 10.3969/j.issn.1002-1779.2017.04.016

    周翔. 直接還原工藝綜述及發展分析. 冶金經濟與管理, 2017(4):53 doi: 10.3969/j.issn.1002-1779.2017.04.016
    [15] Song Z, Li X S, Zha C H. Development status and trend of direct reduction iron technology in my country. China Steel Focus, 2020(16): 22

    宋贊, 李相帥, 查春和. 我國直接還原鐵工藝的發展現狀及趨勢. 冶金管理, 2020(16):22
    [16] Shi Y. The world's direct reduced iron production exceeded 100 million tons for the first time. China Steel Focus, 2020(18): 30

    石禹. 世界直接還原鐵產量首次超過億噸. 冶金管理, 2020(18):30
    [17] Ying Z W, Chu M S, Tang J, et al. Current situation and future adaptability analysis of non-blast furnace ironmaking process. Hebei Metall, 2019(6): 1

    應自偉, 儲滿生, 唐玨, 等. 非高爐煉鐵工藝現狀及未來適應性分析. 河北冶金, 2019(6):1
    [18] Ren L, Zhou S, Peng T D, et al. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China. Renewable Sustainable Energy Rev, 2021, 143: 110846 doi: 10.1016/j.rser.2021.110846
    [19] Tang J, Chu M S, Li F, et al. Development status and future trend of hydrogen metallurgy in China. Hebei Metall, 2020(8): 1

    唐玨, 儲滿生, 李峰, 等. 我國氫冶金發展現狀及未來趨勢. 河北冶金, 2020(8):1
    [20] Yilmaz C, Wendelstorf J, Turek T. Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions. J Clean Prod, 2017, 154: 488 doi: 10.1016/j.jclepro.2017.03.162
    [21] Zhao Y, Wang Y B, Wang T H. Research progress on the absorption of carbon dioxide by organic amine method. Recycl Resour Circ Econ, 2020, 13(7): 26 doi: 10.3969/j.issn.1674-0912.2020.07.009

    趙毅, 王永斌, 王添顥. 有機胺法吸收二氧化碳的研究進展. 再生資源與循環經濟, 2020, 13(7):26 doi: 10.3969/j.issn.1674-0912.2020.07.009
    [22] Li J G, Li J Z, Qin B H. Simulation of carbon dioxide capture and desorption in steel industry flue gas. Energy Environ Prot, 2019, 33(5): 23 doi: 10.3969/j.issn.1006-8759.2019.05.005

    李建光, 李進中, 欽柏豪. 模擬鋼鐵行業煙氣中CO2捕獲與解析實驗研究. 能源環境保護, 2019, 33(5):23 doi: 10.3969/j.issn.1006-8759.2019.05.005
    [23] Zhang P K, Zhang Z W, Wang L. Numerical analysis of novel lime calcination process for CO2 capture. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2021.03.22.002

    張培昆, 張震威, 王立. 用于CO2捕集的新型石灰煅燒過程的數值分析. 工程科學學報,https://doi.org/10.13374/j.issn2095-9389.2021.03.22.002
    [24] Zhu R, Wang X L, Liu R Z. Recent progress and prospective of application of carbon dioxide in ferrous metallurgy process. China Metall, 2017, 27(4): 1

    朱榮, 王雪亮, 劉潤藻. 二氧化碳在鋼鐵冶金流程應用研究現狀與展望. 中國冶金, 2017, 27(4):1
    [25] Wu Z L, Wang H, Yang P Z, et al. Commercial progress in the production of absolute ethanol from tail gas in the iron and steel industry. New Technol New Prod China, 2019(13): 133 doi: 10.3969/j.issn.1673-9957.2019.13.077

    吳志連, 王輝, 楊培志, 等. 鋼鐵工業尾氣制無水乙醇商業進展. 中國新技術新產品, 2019(13):133 doi: 10.3969/j.issn.1673-9957.2019.13.077
    [26] Budinis S, Krevor S, Mac Dowell N, et al. An assessment of CCS costs, barriers and potential. Energy Strategy Rev, 2018, 22: 61
    [27] Sang S X. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery. Coal Geol Explor, 2018, 46(5): 1 doi: 10.3969/j.issn.1001-1986.2018.05.001

    桑樹勛. 二氧化碳地質存儲與煤層氣強化開發有效性研究述評. 煤田地質與勘探, 2018, 46(5):1 doi: 10.3969/j.issn.1001-1986.2018.05.001
    [28] Wang B D, Zhao X L, Cui Q, et al. Environmental monitoring analysis of injected CO2 in saline layer for Shenhua CO2 storage project. Environ Eng, 2018, 36(2): 33

    王保登, 趙興雷, 崔倩, 等. 中國神華煤制油深部咸水層CO2地質封存示范項目監測技術分析. 環境工程, 2018, 36(2):33
  • 加載中
圖(8) / 表(1)
計量
  • 文章訪問數:  898
  • HTML全文瀏覽量:  742
  • PDF下載量:  208
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-08-01
  • 網絡出版日期:  2021-09-18
  • 刊出日期:  2022-04-02

目錄

    /

    返回文章
    返回