<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

全尾砂?廢石膏體流變特性及阻力演化

尹升華 閆澤鵬 嚴榮富 李德賢 趙國亮 張鵬強

尹升華, 閆澤鵬, 嚴榮富, 李德賢, 趙國亮, 張鵬強. 全尾砂?廢石膏體流變特性及阻力演化[J]. 工程科學學報, 2023, 45(1): 9-18. doi: 10.13374/j.issn2095-9389.2021.07.31.002
引用本文: 尹升華, 閆澤鵬, 嚴榮富, 李德賢, 趙國亮, 張鵬強. 全尾砂?廢石膏體流變特性及阻力演化[J]. 工程科學學報, 2023, 45(1): 9-18. doi: 10.13374/j.issn2095-9389.2021.07.31.002
YIN Sheng-hua, YAN Ze-peng, YAN Rong-fu, LI De-xian, ZHAO Guo-liang, ZHANG Peng-qiang. Rheological properties and resistance evolution of cemented unclassified tailings-waste rock paste backfill[J]. Chinese Journal of Engineering, 2023, 45(1): 9-18. doi: 10.13374/j.issn2095-9389.2021.07.31.002
Citation: YIN Sheng-hua, YAN Ze-peng, YAN Rong-fu, LI De-xian, ZHAO Guo-liang, ZHANG Peng-qiang. Rheological properties and resistance evolution of cemented unclassified tailings-waste rock paste backfill[J]. Chinese Journal of Engineering, 2023, 45(1): 9-18. doi: 10.13374/j.issn2095-9389.2021.07.31.002

全尾砂?廢石膏體流變特性及阻力演化

doi: 10.13374/j.issn2095-9389.2021.07.31.002
基金項目: 國家自然科學基金重點資助項目(52034001,51734001);中央高校基本科研業務費專項資金資助項目(FRF-TP-18-003C1);山東省重大科技創新工程資助項目(2019SDZY05)
詳細信息
    通訊作者:

    E-mail: yan_zepeng@163.com

  • 中圖分類號: TG862.2

Rheological properties and resistance evolution of cemented unclassified tailings-waste rock paste backfill

More Information
  • 摘要: 為了研究全尾砂?廢石膏體的管道輸送特性,采用流變儀測試了不同尾砂?廢石質量比(尾廢比)及固體質量分數條件下膏體的流變特性,構建了綜合考慮密實度、灰砂比及體積分數的輸送阻力方程。將該方程代入Comsol軟件中進行模擬計算并與環管實測結果進行對比驗證,數值模型所測誤差均在7%以內,說明該模型用于計算全尾砂?廢石膏體的阻力特性是合理的,還模擬了不同濃度、尾廢比及初始速度條件下管道輸送阻力的變化特征。實驗結果表明:塑性黏度和屈服應力隨著粗骨料膏體固體質量分數和尾廢比的增加而增大;由于顆粒間的摩擦效應導致阻力損失隨尾廢比的增加呈先增大后減小的趨勢,阻力損失在尾廢比5∶5處取得最小值;固體質量分數增大導致水含量的降低,使粗骨料漿體難以流動,從而導致阻力損失快速增長;初始流速增加,顆粒運動變得不穩定,摩擦加劇,并于“拐點”—2.2 m·s?1處阻力損失的增長率大大提高。研究成果對于粗骨料膏體管輸系統的設計具有一定借鑒意義。

     

  • 圖  1  粒度分析結果.(a)全尾砂; (b)廢石

    Figure  1.  Particle size analysis results: (a) unclassified tailing; (b) waste rock

    圖  2  流變剪切過程示意圖

    Figure  2.  Schematic of the rheological shearing process

    圖  3  流變特性曲線(尾廢比6∶4)

    Figure  3.  Rheological characteristic curve (tailing?waste ratio is 6∶4)

    圖  4  固體質量分數對流變特性的影響

    Figure  4.  Effect of the solid mass fraction on the rheological properties

    圖  5  全尾砂?廢石比對流變特性的影響

    Figure  5.  Effect of the tailing?waste rock ratio on the rheological properties

    圖  6  管道幾何結構及截面網格剖分圖

    Figure  6.  Diagram of the pipeline geometry and section meshing

    圖  7  模型驗證

    Figure  7.  Model validation

    圖  8  不同初始速度下尾廢比對阻力損失的影響.(a) 2.0 m·s?1; (b) 2.2 m·s?1; (c) 2.4 m·s?1

    Figure  8.  Effect of the tailing?waste rock ratio on the drag loss with different initial velocities: (a)2.0 m·s?1; (b) 2.2 m·s?1; (c) 2.4 m·s?1

    圖  9  不同初始速度下固體質量分數對阻力損失的影響. (a) 2.0 m·s?1; (b) 2.2 m·s?1; (c) 2.4 m·s?1

    Figure  9.  Effect of the solid mass fraction on the drag loss with different initial velocities: (a) 2.0 m·s?1; (b) 2.2 m·s?1; (c) 2.4 m·s?1

    圖  10  不同固體質量分數下初始速度對阻力損失的影響.(a) 73%; (b) 75%; (c) 77%

    Figure  10.  Effect of the initial velocity on the resistance loss with different solid mass fractions: (a) 73%; (b) 75%; (c) 77%

    表  1  充填材料化學成分

    Table  1.   Chemical composition of the filling material

    MaterialsSiO2CaOMgOAl2O3Fe2O3SO3K2OTiO2MnOOther
    Unclassified tailing42.203.7332.714.0412.143.370.390.3300.85
    Waste rock47.7116.3915.227.817.172.581.950.540.120.39
    下載: 導出CSV

    表  2  充填材料活性指標

    Table  2.   Activity index of the filling material

    MaterialsAlkalinity rateActivity rateMass indexActivity
    Unclassified tailing0.790.10.24Low activity
    Waste rock0.570.1630.54Low activity
    下載: 導出CSV

    表  3  混合骨料的堆積密實度

    Table  3.   Stacking compactness of the mixed aggregate

    Tailing?waste rock ratioDensity of mixed aggregate/(g·cm?3)Compactness,Φ
    0∶12.8260.476
    1∶92.8150.489
    2∶82.8010.508
    3∶72.7880.521
    4∶62.7740.542
    5∶52.7610.593
    6∶42.7520.614
    7∶32.7430.529
    8∶22.7320.501
    9∶12.7240.496
    1∶02.7150.464
    下載: 導出CSV

    表  4  流變測試方案

    Table  4.   Rheological test summary

    SchemeSolid mass fraction/%Volume fraction/%Cement?sand mass ratioWater?cement mass ratioTailing?waste rock ratioBulk density
    1–36755.20%1∶41.414∶6/5∶5/6∶40.542/0.593/0.614
    4–66952.39%1∶41.574∶6/5∶5/6∶40.542/0.593/0.614
    7–97149.72%1∶41.754∶6/5∶5/6∶40.542/0.593/0.614
    10–127347.19%1∶41.944∶6/5∶5/6∶40.542/0.593/0.614
    13–157544.77%1∶42.144∶6/5∶5/6∶40.542/0.593/0.614
    16–187742.47%1∶42.354∶6/5∶5/6∶40.542/0.593/0.614
    下載: 導出CSV

    表  5  流變參數擬合結果

    Table  5.   Fitting results of rheological parameters

    Tailing?waste
    rock ratio
    Solid mass fraction /%Yield stress/PaPlastic viscosity/(Pa·s?1)R2
    4∶677%184.31550.74240.9971
    75%85.85220.64760.9977
    73%61.37610.43440.9924
    71%43.53270.26770.9889
    69%26.97100.18150.9844
    67%18.00020.14220.9631
    5∶577%206.56930.82780.9743
    75%138.07410.75090.9993
    73%91.13350.64650.9992
    71%69.49890.41440.9927
    69%53.83250.27370.9876
    67%39.40850.16730.9798
    6∶477%236.98430.90170.9612
    75%172.71040.86510.9849
    73%118.84470.75260.9996
    71%81.17090.50740.9986
    69%63.02340.34530.9941
    67%46.60480.23110.9861
    下載: 導出CSV

    表  6  屈服應力擬合結果

    Table  6.   Yield stress fitting result

    Tailing?waste rock
    mass ratio
    Fitting equation of the yield stress and
    slurry volume fraction
    R2Fitting equation of the yield stress and slurry
    water?cement ratio
    R2
    4∶6${\tau _0} = 0.0029{{\text{e}}^{20.49{C_{\text{v}}}}}$0.97${\tau _0} = 1384.01{(w/c)^{ - 5.10}}$0.97
    5∶5${\tau _0} = 0.113{{\text{e}}^{13.91{C_{\text{v}}}}}$0.99${\tau _0} = 820.24{(w/c)^{ - 3.46}}$0.99
    6∶4${\tau _0} = 0.196{{\text{e}}^{13.18{C_{\text{v}}}}}$0.99${\tau _0} = 894.21{(w/c)^{ - 3.28}}$0.99
    下載: 導出CSV

    表  7  參數擬合結果

    Table  7.   Parameter fitting result

    Tailing-waste
    rock ratio
    Yield stressR2Plastic viscosityR2
    aba1b1k
    4∶61232.80?4.850.971.980.645.580.97
    5∶5799.77?3.210.993.842.392.720.99
    6∶4924.96?3.030.991.280.773.760.99
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yang Z Q, Wang Y Q, Gao Q, et al. Research on pressure loss in pipe by conveying mix slurry with waste rock and full tailings based on round pipe test. J Hefei Univ Technol (Nat Sci), 2017, 40(8): 1092

    楊志強, 王永前, 高謙, 等. 廢石尾砂混合料漿管道輸送壓力損失環管試驗. 合肥工業大學學報(自然科學版), 2017, 40(8):1092
    [2] Yin S H, Liu J M, Chen W, et al. Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation. Chin J Eng, 2020, 42(7): 829

    尹升華, 劉家明, 陳威, 等. 不同粗骨料對膏體凝結性能的影響及配比優化. 工程科學學報, 2020, 42(7):829
    [3] Feng G R, Jia X Q, Guo Y X, et al. Influence of the wasted concrete coarse aggregate on the performance of cemented paste backfill. J China Coal Soc, 2015, 40(6): 1320 doi: 10.13225/j.cnki.jccs.2015.3054

    馮國瑞, 賈學強, 郭育霞, 等. 廢棄混凝土粗骨料對充填膏體性能的影響. 煤炭學報, 2015, 40(6):1320 doi: 10.13225/j.cnki.jccs.2015.3054
    [4] Yang X B, Xiao B L, Gao Q, et al. Determining the pressure drop of cemented Gobi sand and tailings paste backfill in a pipe flow. Constr Build Mater, 2020, 255: 119371 doi: 10.1016/j.conbuildmat.2020.119371
    [5] Benzaazoua M, Bussière B, Demers I, et al. Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: Application to mine Doyon, Quebec, Canada. Miner Eng, 2008, 21(4): 330 doi: 10.1016/j.mineng.2007.11.012
    [6] Cheng W H. Study on High Concentration Gravity Filling Technology of Coarse Aggregate [Dissertation]. Kunming: Kunming University of Science and Technology, 2012

    程緯華. 粗骨料高濃度自流充填技術研究[學位論文]. 昆明: 昆明理工大學, 2012
    [7] Wu D, Yang B G, Liu Y C. Transportability and pressure drop of fresh cemented coal gangue-fly ash backfill (CGFB) slurry in pipe loop. Powder Technol, 2015, 284: 218 doi: 10.1016/j.powtec.2015.06.072
    [8] Liu L, Fang Z Y, Wu Y P, et al. Experimental investigation of solid-liquid two-phase flow in cemented rock-tailings backfill using Electrical Resistance Tomography. Constr Build Mater, 2018, 175: 267 doi: 10.1016/j.conbuildmat.2018.04.139
    [9] Zhang L F, Wu A X, Wang H J. Effects and mechanism of pumping agent on rheological properties of highly muddy paste. Chin J Eng, 2018, 40(8): 918

    張連富, 吳愛祥, 王洪江. 泵送劑對高含泥膏體流變特性影響及機理. 工程科學學報, 2018, 40(8):918
    [10] Cai S J, Huang G, Wu D, et al. Experimental and modeling study on the rheological properties of tailings backfill. J Northeast Univ (Nat Sci), 2015, 36(6): 882 doi: 10.3969/j.issn.1005-3026.2015.06.027

    蔡嗣經, 黃剛, 吳迪, 等. 尾砂充填料漿流變性能模型與試驗研究. 東北大學學報(自然科學版), 2015, 36(6):882 doi: 10.3969/j.issn.1005-3026.2015.06.027
    [11] Boylu F, Din?er H, Ate?ok G. Effect of coal particle size distribution, volume fraction and rank on the rheology of coal-water slurries. Fuel Process Technol, 2004, 85(4): 241 doi: 10.1016/S0378-3820(03)00198-X
    [12] Petit J Y, Khayat K H, Wirquin E. Coupled effect of time and temperature on variations of yield value of highly flowable mortar. Cem Concr Res, 2006, 36(5): 832 doi: 10.1016/j.cemconres.2005.11.001
    [13] Wu A X, Cheng H Y, Wang Y M, et al. Transport resistance characteristic of paste pipeline considering effect of wall slip. Chin J Nonferrous Met, 2016, 26(1): 180 doi: 10.19476/j.ysxb.1004.0609.2016.01.021

    吳愛祥, 程海勇, 王貽明, 等. 考慮管壁滑移效應膏體管道的輸送阻力特性. 中國有色金屬學報, 2016, 26(1):180 doi: 10.19476/j.ysxb.1004.0609.2016.01.021
    [14] Liu X H. Study on Rheological Behavior and Pipe Flow Resistance of Paste Backfill [Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    劉曉輝. 膏體流變行為及其管流阻力特性研究[學位論文]. 北京: 北京科技大學, 2015
    [15] Ye J, Xia J X, Beata M. Study on the resistance loss of hydraulic transport for coarse particles in horizontal pipeline. Met Mine, 2011(7): 12

    葉堅, 夏建新, Malczewska Beata. 水平管道水力輸送粗粒物料的阻力損失研究. 金屬礦山, 2011(7):12
    [16] Wu D, Yang B G, Liu Y C. Pressure drop in loop pipe flow of fresh cemented coal gangue-fly ash slurry: Experiment and simulation. Adv Powder Technol, 2015, 26(3): 920 doi: 10.1016/j.apt.2015.03.009
    [17] Yang T Y, Qiao D P, Wang J, et al. Numerical simulation and new model of pipeline transportation resistance of waste rock-aeolian sand high concentration slurry. Chin J Nonferrous Met, 2021, 31(1): 234 doi: 10.11817/j.ysxb.1004.0609.2021-36517

    楊天雨, 喬登攀, 王俊, 等. 廢石-風砂高濃度料漿管道輸送數值模擬及管輸阻力新模型. 中國有色金屬學報, 2021, 31(1):234 doi: 10.11817/j.ysxb.1004.0609.2021-36517
    [18] Zhang Q L, Liu Q, Zhao J W, et al. Pipeline transportation characteristics of filling paste-like slurry pipeline in deep mine. Chin J Nonferrous Met, 2015, 25(11): 3190 doi: 10.19476/j.ysxb.1004.0609.2015.11.030

    張欽禮, 劉奇, 趙建文, 等. 深井似膏體充填管道的輸送特性. 中國有色金屬學報, 2015, 25(11):3190 doi: 10.19476/j.ysxb.1004.0609.2015.11.030
    [19] Wu D, Cai S J, Yang W, et al. Simulation and experiment of backfilling pipeline transportation of solid-liquid two-phase flow based on CFD. Chin J Nonferrous Met, 2012, 22(7): 2133

    吳迪, 蔡嗣經, 楊威, 等. 基于CFD的充填管道固液兩相流輸送模擬及試驗. 中國有色金屬學報, 2012, 22(7):2133
    [20] Wang X M, Zhang D M, Zhang Q L, et al. Pipeline self-flowing transportation property of paste based on FLOW-3D software in deep mine. J Central South Univ (Sci Technol), 2011, 42(7): 2102

    王新民, 張德明, 張欽禮, 等. 基于FLOW-3D軟件的深井膏體管道自流輸送性能. 中南大學學報(自然科學版), 2011, 42(7):2102
    [21] Xue Z L, Gan D Q, Zhang Y Z, et al. Rheological behavior of ultrafine-tailings cemented paste backfill in high-temperature mining conditions. Constr Build Mater, 2020, 253: 119212 doi: 10.1016/j.conbuildmat.2020.119212
    [22] Wu A X, Liu X H, Wang H J, et al. Resistance characteristics of structure fluid backfilling slurry in pipeline transport. J Central South Univ (Sci Technol), 2014, 45(12): 4325

    吳愛祥, 劉曉輝, 王洪江, 等. 結構流充填料漿管道輸送阻力特性. 中南大學學報(自然科學版), 2014, 45(12):4325
    [23] Zhang X X, Qiao D P. Rheological property and yield stress forecasting model of high-density slurry with waste rock-tailings. J Saf Environ, 2015, 15(4): 278 doi: 10.13637/j.issn.1009-6094.2015.04.058

    張修香, 喬登攀. 廢石-尾砂高濃度料漿的流變特性及屈服應力預測模型. 安全與環境學報, 2015, 15(4):278 doi: 10.13637/j.issn.1009-6094.2015.04.058
    [24] Hou Y Q, Yin S H, Dai C Q, et al. Rheological properties and pipeline resistance calculation model in tailings paste. Chin J Nonferrous Met, 2021, 31(2): 510 doi: 10.11817/j.ysxb.1004.0609.2021-35800

    侯永強, 尹升華, 戴超群, 等. 尾礦膏體流變特性和管輸阻力計算模型. 中國有色金屬學報, 2021, 31(2):510 doi: 10.11817/j.ysxb.1004.0609.2021-35800
    [25] Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
    [26] Xue Z L, Yan Z P, Jiao H Z, et al. Dynamic settlement law of flocs during unclassified tailings in deep cone thickening process. Chin J Nonferrous Met, 2020, 30(9): 2206 doi: 10.11817/j.ysxb.1004.0609.2020-37563

    薛振林, 閆澤鵬, 焦華喆, 等. 全尾砂深錐濃密過程中絮團的動態沉降規律. 中國有色金屬學報, 2020, 30(9):2206 doi: 10.11817/j.ysxb.1004.0609.2020-37563
    [27] Gan D Q, Sun H K, Xue Z L, et al. Transport state evolution of the packed slurry with the influence of temperature. J China Univ Min Technol, 2021, 50(2): 248 doi: 10.13247/j.cnki.jcumt.001225

    甘德清, 孫海寬, 薛振林, 等. 溫度影響下的充填料漿大流量管輸流態演化. 中國礦業大學學報, 2021, 50(2):248 doi: 10.13247/j.cnki.jcumt.001225
  • 加載中
圖(10) / 表(7)
計量
  • 文章訪問數:  678
  • HTML全文瀏覽量:  311
  • PDF下載量:  77
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-07-31
  • 網絡出版日期:  2021-09-08
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回