Microstructure and mechanical properties of 15Ni?15Cr oxide dispersion strengthened austenitic steel
-
摘要: 氧化物彌散強化(Oxide dispersion strengthened, ODS)鋼因其良好的高溫力學性能和抗輻照性能被認為是鈉冷快堆包殼材料的重要候選材料. 本文通過機械合金化以及熱等靜壓和鍛造工藝制備了15Ni?15Cr ODS奧氏體鋼,并且采用相同工藝制備了不加氧化物的15Ni?15Cr奧氏體鋼作為參比材料. 利用透射電鏡對樣品的微觀結構進行分析,發現15Ni?15Cr和15Ni?15Cr ODS奧氏體鋼晶粒尺寸分別為0.75和0.5 μm. 15Ni?15Cr ODS奧氏體鋼中分布的氧化物彌散粒子主要為δ-Y4Zr3O12以及少量的Al2O3. 15Ni?15Cr ODS奧氏體鋼中氧化物彌散粒子的平均粒徑為12.8 nm、數密度5.5×1022 m?3、粒子間距26 nm. 相比于15Ni?15Cr奧氏體鋼,15Ni?15Cr ODS奧氏體鋼具有更高的強度,但是高溫塑性有所降低. 15Ni?15Cr ODS奧氏體鋼的室溫斷裂機制為韌性斷裂,高溫斷裂機制為韌–脆混合斷裂.
-
關鍵詞:
- 15Ni?15Cr /
- 15Ni?15Cr ODS奧氏體鋼 /
- 微觀結構 /
- Y?Zr?O氧化物粒子 /
- 力學性能
Abstract: The development of advanced cladding material with improved service performance is a key issue in engineering applications of sodium-cooled fast reactors. At present, the cladding materials of sodium-cooled fast reactors are mainly AISI type 316 or 15-15Ti austenitic stainless steel obtained by the traditional smelting method. However, the high-temperature mechanical properties and neutron irradiation resistance of these current austenitic steels cannot meet the service performance requirements for cladding of commercial fast reactors. Oxide dispersion strengthened (ODS) austenitic steel is considered to be an important candidate material for cladding application in most Generation IV reactors because of its good high-temperature mechanical properties and excellent irradiation resistance. In this study, 15Ni?15Cr ODS austenitic steel was prepared by mechanical alloying, hot isostatic pressing, and forging processes. As the reference material, 15Ni?15Cr austenitic steel without oxide addition was also prepared by the same processes. The microstructure of the sample was characterized by high-resolution transmission electron microscopy combined with a high-angle annular dark field. The average grain size of 15Ni?15Cr ODS austenitic steels is only 0.5 μm, which is smaller than that of the reference material 15Ni?15Cr (i.e., 0.75 μm). The oxide-dispersed particles distributed in 15Ni?15Cr ODS austenitic steel are mainly δ-Y4Zr3O12 and a small amount of Al2O3. The average particle size of oxide-dispersed particles in 15Ni?15Cr ODS austenitic steel is 12.8 nm, the number density is 5.5×1022 m?3, and the interparticle spacing is 26 nm. Compared with the reference material 15Ni?15Cr, 15Ni?15Cr ODS austenitic steel exhibits higher strength, particularly at high temperature, which can be attributed to the refinement of crystal grains and the pinning effect of oxide-dispersed particles on dislocations. However, the plasticity of 15Ni?15Cr ODS austenitic steel decreases at a high temperature of 700 °C. The fracture surface of 15Ni?15Cr ODS austenitic steel at room temperature shows typically ductile fractures, whereas that at the high temperature of 700 °C shows ductile–brittle fractures. -
表 1 15Ni?15Cr奧氏體鋼的成分設計(質量分數)
Table 1. Composition design of 15Ni?15Cr austenitic steel
% Sample Cr Ni Mo Zr Y2O3 Fe 15Ni?15Cr 14.2 15.5 2.4 0 0 Bal. 15Ni?15Cr ODS 14.2 15.5 2.4 0.5 0.35 Bal. 表 2 樣品的成分檢測(質量分數)
Table 2. Component detection of the samples
% Sample Fe Cr Ni Mo Zr Y Al C N O 15Ni?15Cr Bal. 13.7 15.3 2.45 — — 0.27 0.015 0.086 0.14 15Ni?15Cr ODS Bal. 13.0 15.0 2.46 0.47 0.25 0.36 0.010 0.098 0.29 表 3 15Ni?15Cr ODS奧氏體鋼的平均粒徑、數密度以及粒子間距
Table 3. Average particle size, number density, and interparticle spacing of 15Ni?15Cr ODS austenitic steel
Sample Average particle size/nm Number density/m?3 Interparticle spacing/nm 15Ni?15Cr ODS 12.8 5.5×1022 26 表 4 室溫和700 ℃下,15Ni?15Cr、15Ni?15Cr ODS奧氏體鋼的拉伸比較
Table 4. Tensile comparison of 15Ni?15Cr and 15Ni?15Cr ODS austenitic steels at room temperature (RT) and 700 ℃
Sample Room temperature 700 ℃ Reference Ultimate tensile strength/MPa Yield strength/MPa Total elongation/% Ultimate tensile strength/MPa Yield strength/MPa Total elongation/% 15Ni?15Cr 814 603 16.7 393 326 21 This study 15Ni?15Cr ODS 947 795 21.9 554 458 7.5 This study 15Ni?15Cr 670 625 35 375 330 41 [26] 15Ni?15Cr 690 523 50 — — — [27] www.77susu.com -
參考文獻
[1] Xu M. Fast neutron reactor. Mod Phys, 2018, 30(4): 11徐銤. 快中子堆. 現代物理知識, 2018, 30(4):11 [2] Cheon J S, Lee C B, Lee B O, et al. Sodium fast reactor evaluation: Core materials. J Nucl Mater, 2009, 392(2): 324 doi: 10.1016/j.jnucmat.2009.03.021 [3] Jayakumar T, Mathew M D, Laha K, et al. Materials development for fast reactor applications. Nucl Eng Des, 2013, 265: 1175 doi: 10.1016/j.nucengdes.2013.05.001 [4] Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J Nucl Mater, 2008, 383(1-2): 189 doi: 10.1016/j.jnucmat.2008.08.044 [5] Leo J R O, Barroso S P, Fitzpatrick M E, et al. Microstructure, tensile and creep properties of an austenitic ODS 316L steel. Mater Sci Eng A, 2019, 749: 158 doi: 10.1016/j.msea.2019.02.014 [6] Oka H, Watanabe M, Ohnuki S, et al. Effects of milling process and alloying additions on oxide particle dispersion in austenitic stainless steel. J Nucl Mater, 2014, 447(1-3): 248 doi: 10.1016/j.jnucmat.2014.01.025 [7] Ganesh S, Karthik P S, Ramakrishna M, et al. Ultra-high strength oxide dispersion strengthened austenitic steel. Mater Sci Eng A, 2021, 814: 141192 doi: 10.1016/j.msea.2021.141192 [8] Mao X D, Kang S H, Kim T K, et al. Microstructure and mechanical properties of ultrafine-grained austenitic oxide dispersion strengthened steel. Metall Mater Trans A, 2016, 47(11): 5334 doi: 10.1007/s11661-016-3570-z [9] Du A B, Feng W, Ma H L, et al. Effects of titanium and silicon on the swelling behavior of 15–15Ti steels by heavy-ion beam irradiation. Acta Metall Sin (Engl Lett) , 2017, 30(11): 1049 doi: 10.1007/s40195-017-0581-8 [10] Kim T K, Noh S, Kang S H, et al. Development of advanced radiation resistant ODS steel for fast reactor system applications. World J Eng Technol, 2015, 3(3): 125 doi: 10.4236/wjet.2015.33C019 [11] Dubuisson P, de Carlan Y, Garat V, et al. ODS Ferritic/martensitic alloys for Sodium Fast Reactor fuel pin cladding. J Nucl Mater, 2012, 428(1-3): 6 doi: 10.1016/j.jnucmat.2011.10.037 [12] Yvon P, le Flem M, Cabet C, et al. Structural materials for next generation nuclear systems: Challenges and the path forward. Nucl Eng Des, 2015, 294: 161 doi: 10.1016/j.nucengdes.2015.09.015 [13] Li M, Zhou Z J, He P, et al. Microstructure and mechanical property of 12Cr oxide dispersion strengthened ferritic steel for fusion application. Fusion Eng Des, 2010, 85(7-9): 1573 doi: 10.1016/j.fusengdes.2010.04.045 [14] Mao X D, Kim T K, Kim S S, et al. Crystallographic relationship of YTaO4 particles with matrix in Ta-containing 12Cr ODS steel. J Nucl Mater, 2015, 461: 329 doi: 10.1016/j.jnucmat.2015.03.018 [15] Xu S, Chen L Z, Cao S G, et al. Research progress on microstructure design and control of ODS steels applied to advanced nuclear energy systems. Mater Rep, 2019, 33(1): 78徐帥, 陳靈芝, 曹書光, 等. 先進核能系統用ODS鋼的顯微組織設計與調控研究進展. 材料導報, 2019, 33(1):78 [16] Allen T R, Gan J, Cole J I, et al. Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation. J Nucl Mater, 2008, 375(1): 26 doi: 10.1016/j.jnucmat.2007.11.001 [17] Zinkle S J, Boutard J L, Hoelzer D T, et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications. Nucl Fusion, 2017, 57(9): 092005 doi: 10.1088/1741-4326/57/9/092005 [18] Rahmanifard R, Farhangi H, Novinrooz A J. Effect of zirconium and tantalum on the microstructural characteristics of 12YWT ODS steel nanocomposite. J Alloys Compd, 2015, 622: 948 doi: 10.1016/j.jallcom.2014.11.018 [19] Xu H J, Lu Z, Wang D M, et al. Effect of zirconium addition on the microstructure and mechanical properties of 15Cr-ODS ferritic Steels consolidated by hot isostatic pressing. Fusion Eng Des, 2017, 114: 33 doi: 10.1016/j.fusengdes.2016.11.011 [20] Cao S G, Zhou Z J. Microstructure and mechanical properties of an ODS ferritic steel with very low Cr content. J Nucl Mater, 2021, 551: 152971 doi: 10.1016/j.jnucmat.2021.152971 [21] Xu Y L, Zhou Z J, Li M, et al. Fabrication and characterization of ODS austenitic steels. J Nucl Mater, 2011, 417(1-3): 283 doi: 10.1016/j.jnucmat.2010.12.155 [22] Zhou Z J, Yang S, Chen W H, et al. Processing and characterization of a hipped oxide dispersion strengthened austenitic steel. J Nucl Mater, 2012, 428(1-3): 31 doi: 10.1016/j.jnucmat.2011.08.027 [23] Oka H, Watanabe M, Kinoshita H, et al. In situ observation of damage structure in ODS austenitic steel during electron irradiation. J Nucl Mater, 2011, 417(1-3): 279 doi: 10.1016/j.jnucmat.2010.12.156 [24] Zhang H K, Yao Z W, Zhou Z J, et al. Radiation induced microstructures in ODS 316 austenitic steel under dual-beam ions. J Nucl Mater, 2014, 455(1-3): 242 doi: 10.1016/j.jnucmat.2014.06.024 [25] Dong H Q. Effect of ZR, HF Addition on the Microstructure and Tensile Properties of FeCrAl-ODS Steels [Dissertation]. Tianjin: Tianjin University, 2017董紅慶. Zr、Hf−對Fe−Cr−Al系ODS鋼顯微組織和拉伸性能的影響[學位論文]. 天津: 天津大學, 2017 [26] Liu J. Research on tensile behavior of domestic fast reactor cladding material 15Ni?15Cr stainless steel. Ind Sci Tribune, 2018, 17(10): 45 doi: 10.3969/j.issn.1673-5641.2018.10.022劉健. 國產快堆包殼材料15-15Ti不銹鋼的拉伸行為研究. 產業與科技論壇, 2018, 17(10):45 doi: 10.3969/j.issn.1673-5641.2018.10.022 [27] Zhuang Y, Zhang X Y, Peng T, et al. Effects of yttrium oxides on the microstructure and mechanical properties of 15-15Ti ODS alloy fabricated by casting. Mater Charact, 2020, 162: 110228 doi: 10.1016/j.matchar.2020.110228 [28] Xu S, Zhou Z J, Jia H D. Research progress and prospect of strength-ductility trade-off about irradiation resistant ODS F/M steel. At Energy Sci Technol, 2019, 53(10): 1885徐帥, 周張健, 賈皓東. 先進反應堆用ODS F/M鋼的強韌性匹配研究進展. 原子能科學技術, 2019, 53(10):1885 -