<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

15Ni?15Cr ODS鋼的微觀結構與力學性能

趙瑞林 賈皓東 曹書光 佟振峰 周張健

趙瑞林, 賈皓東, 曹書光, 佟振峰, 周張健. 15Ni?15Cr ODS鋼的微觀結構與力學性能[J]. 工程科學學報, 2023, 45(1): 107-116. doi: 10.13374/j.issn2095-9389.2021.07.28.001
引用本文: 趙瑞林, 賈皓東, 曹書光, 佟振峰, 周張健. 15Ni?15Cr ODS鋼的微觀結構與力學性能[J]. 工程科學學報, 2023, 45(1): 107-116. doi: 10.13374/j.issn2095-9389.2021.07.28.001
ZHAO Rui-lin, JIA Hao-dong, CAO Shu-guang, TONG Zhen-feng, ZHOU Zhang-jian. Microstructure and mechanical properties of 15Ni?15Cr oxide dispersion strengthened austenitic steel[J]. Chinese Journal of Engineering, 2023, 45(1): 107-116. doi: 10.13374/j.issn2095-9389.2021.07.28.001
Citation: ZHAO Rui-lin, JIA Hao-dong, CAO Shu-guang, TONG Zhen-feng, ZHOU Zhang-jian. Microstructure and mechanical properties of 15Ni?15Cr oxide dispersion strengthened austenitic steel[J]. Chinese Journal of Engineering, 2023, 45(1): 107-116. doi: 10.13374/j.issn2095-9389.2021.07.28.001

15Ni?15Cr ODS鋼的微觀結構與力學性能

doi: 10.13374/j.issn2095-9389.2021.07.28.001
基金項目: 國家自然科學基金資助項目(U1967212)
詳細信息
    通訊作者:

    E-mail: zhouzhj@mater.ustb.edu.cn

  • 中圖分類號: TL341

Microstructure and mechanical properties of 15Ni?15Cr oxide dispersion strengthened austenitic steel

More Information
  • 摘要: 氧化物彌散強化(Oxide dispersion strengthened, ODS)鋼因其良好的高溫力學性能和抗輻照性能被認為是鈉冷快堆包殼材料的重要候選材料. 本文通過機械合金化以及熱等靜壓和鍛造工藝制備了15Ni?15Cr ODS奧氏體鋼,并且采用相同工藝制備了不加氧化物的15Ni?15Cr奧氏體鋼作為參比材料. 利用透射電鏡對樣品的微觀結構進行分析,發現15Ni?15Cr和15Ni?15Cr ODS奧氏體鋼晶粒尺寸分別為0.75和0.5 μm. 15Ni?15Cr ODS奧氏體鋼中分布的氧化物彌散粒子主要為δ-Y4Zr3O12以及少量的Al2O3. 15Ni?15Cr ODS奧氏體鋼中氧化物彌散粒子的平均粒徑為12.8 nm、數密度5.5×1022 m?3、粒子間距26 nm. 相比于15Ni?15Cr奧氏體鋼,15Ni?15Cr ODS奧氏體鋼具有更高的強度,但是高溫塑性有所降低. 15Ni?15Cr ODS奧氏體鋼的室溫斷裂機制為韌性斷裂,高溫斷裂機制為韌–脆混合斷裂.

     

  • 圖  1  各種粉末樣品球磨后的掃描電鏡圖. (a,b) 15Ni?15Cr鋼; (c,d) 15Ni?15Cr ODS鋼

    Figure  1.  SEM images of various powder samples after ball milling: (a, b) 15Ni?15Cr steel;(c, d) 15Ni?15Cr ODS steel

    圖  2  試樣的透射電鏡明場像.(a,b) 15Ni?15Cr鋼;(c,d) 15Ni?15Cr ODS奧氏體鋼

    Figure  2.  TEM bright-field images: (a, b) 15Ni?15Cr steel; (c, d) 15Ni?15Cr ODS austenitic steel

    圖  3  15Ni?15Cr ODS奧氏體鋼中氧化物彌散粒子的透射電鏡(a)和粒徑分布圖(b)

    Figure  3.  TEM (a) and particle size distribution (b) of oxide-dispersed particles in 15Ni?15Cr ODS austenitic steel

    圖  4  15Ni?15Cr ODS奧氏體鋼的高角環形暗場相

    Figure  4.  HAADF of 15Ni?15Cr ODS austenitic steel

    圖  5  納米氧化物粒子的HRTEM(a, c)和FFT (b, d)

    Figure  5.  HRTEM micrographs (a, c) and corresponding FFT images (b, d) of nano-oxide particles

    圖  6  粒徑100 nm的Al2O3粒子的透射電鏡(a)和選區電子衍射(b)

    Figure  6.  TEM (a) and selected area electron diffraction (b) of Al2O3 with a particle size of 100 nm

    圖  7  不同溫度下,15Ni?15Cr、15Ni?15Cr ODS奧氏體鋼的應力?應變曲線. (a)室溫;(b) 700 ℃

    Figure  7.  Stress–strain curves of 15Ni?15Cr and 15Ni?15Cr ODS austenitic steels at different temperatures: (a) room temperature; (b) 700 °C

    圖  8  室溫下試樣的拉伸斷口形貌. (a,b) 15Ni?15Cr 鋼; (c,d) 15Ni?15Cr ODS奧氏體鋼

    Figure  8.  Tensile fracture morphology of samples at room temperature: (a, b) 15Ni?15Cr steels; (c, d) 15Ni?15Cr ODS austenitic steels

    圖  9  700 ℃高溫下試樣的拉伸斷口形貌. (a,b,c) 15Ni?15Cr鋼;(d,e,f) 15Ni?15Cr ODS奧氏體鋼

    Figure  9.  Tensile fracture morphologies of samples at a high temperature of 700 °C: (a,b,c) 15Ni?15Cr steel; (d,e,f) 15Ni?15Cr ODS austenitic steels

    表  1  15Ni?15Cr奧氏體鋼的成分設計(質量分數)

    Table  1.   Composition design of 15Ni?15Cr austenitic steel %

    SampleCrNiMoZrY2O3Fe
    15Ni?15Cr14.215.52.400Bal.
    15Ni?15Cr ODS14.215.52.40.50.35Bal.
    下載: 導出CSV

    表  2  樣品的成分檢測(質量分數)

    Table  2.   Component detection of the samples %

    SampleFeCrNiMoZrYAlCNO
    15Ni?15CrBal.13.715.32.450.270.0150.0860.14
    15Ni?15Cr ODSBal.13.015.02.460.470.250.360.0100.0980.29
    下載: 導出CSV

    表  3  15Ni?15Cr ODS奧氏體鋼的平均粒徑、數密度以及粒子間距

    Table  3.   Average particle size, number density, and interparticle spacing of 15Ni?15Cr ODS austenitic steel

    SampleAverage particle size/nmNumber density/m?3Interparticle spacing/nm
    15Ni?15Cr ODS12.85.5×102226
    下載: 導出CSV

    表  4  室溫和700 ℃下,15Ni?15Cr、15Ni?15Cr ODS奧氏體鋼的拉伸比較

    Table  4.   Tensile comparison of 15Ni?15Cr and 15Ni?15Cr ODS austenitic steels at room temperature (RT) and 700 ℃

    SampleRoom temperature 700 ℃Reference
    Ultimate tensile strength/MPaYield strength/MPaTotal elongation/%Ultimate tensile strength/MPaYield strength/MPaTotal elongation/%
    15Ni?15Cr81460316.7 39332621This study
    15Ni?15Cr ODS94779521.95544587.5This study
    15Ni?15Cr6706253537533041[26]
    15Ni?15Cr69052350[27]
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Xu M. Fast neutron reactor. Mod Phys, 2018, 30(4): 11

    徐銤. 快中子堆. 現代物理知識, 2018, 30(4):11
    [2] Cheon J S, Lee C B, Lee B O, et al. Sodium fast reactor evaluation: Core materials. J Nucl Mater, 2009, 392(2): 324 doi: 10.1016/j.jnucmat.2009.03.021
    [3] Jayakumar T, Mathew M D, Laha K, et al. Materials development for fast reactor applications. Nucl Eng Des, 2013, 265: 1175 doi: 10.1016/j.nucengdes.2013.05.001
    [4] Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J Nucl Mater, 2008, 383(1-2): 189 doi: 10.1016/j.jnucmat.2008.08.044
    [5] Leo J R O, Barroso S P, Fitzpatrick M E, et al. Microstructure, tensile and creep properties of an austenitic ODS 316L steel. Mater Sci Eng A, 2019, 749: 158 doi: 10.1016/j.msea.2019.02.014
    [6] Oka H, Watanabe M, Ohnuki S, et al. Effects of milling process and alloying additions on oxide particle dispersion in austenitic stainless steel. J Nucl Mater, 2014, 447(1-3): 248 doi: 10.1016/j.jnucmat.2014.01.025
    [7] Ganesh S, Karthik P S, Ramakrishna M, et al. Ultra-high strength oxide dispersion strengthened austenitic steel. Mater Sci Eng A, 2021, 814: 141192 doi: 10.1016/j.msea.2021.141192
    [8] Mao X D, Kang S H, Kim T K, et al. Microstructure and mechanical properties of ultrafine-grained austenitic oxide dispersion strengthened steel. Metall Mater Trans A, 2016, 47(11): 5334 doi: 10.1007/s11661-016-3570-z
    [9] Du A B, Feng W, Ma H L, et al. Effects of titanium and silicon on the swelling behavior of 15–15Ti steels by heavy-ion beam irradiation. Acta Metall Sin (Engl Lett), 2017, 30(11): 1049 doi: 10.1007/s40195-017-0581-8
    [10] Kim T K, Noh S, Kang S H, et al. Development of advanced radiation resistant ODS steel for fast reactor system applications. World J Eng Technol, 2015, 3(3): 125 doi: 10.4236/wjet.2015.33C019
    [11] Dubuisson P, de Carlan Y, Garat V, et al. ODS Ferritic/martensitic alloys for Sodium Fast Reactor fuel pin cladding. J Nucl Mater, 2012, 428(1-3): 6 doi: 10.1016/j.jnucmat.2011.10.037
    [12] Yvon P, le Flem M, Cabet C, et al. Structural materials for next generation nuclear systems: Challenges and the path forward. Nucl Eng Des, 2015, 294: 161 doi: 10.1016/j.nucengdes.2015.09.015
    [13] Li M, Zhou Z J, He P, et al. Microstructure and mechanical property of 12Cr oxide dispersion strengthened ferritic steel for fusion application. Fusion Eng Des, 2010, 85(7-9): 1573 doi: 10.1016/j.fusengdes.2010.04.045
    [14] Mao X D, Kim T K, Kim S S, et al. Crystallographic relationship of YTaO4 particles with matrix in Ta-containing 12Cr ODS steel. J Nucl Mater, 2015, 461: 329 doi: 10.1016/j.jnucmat.2015.03.018
    [15] Xu S, Chen L Z, Cao S G, et al. Research progress on microstructure design and control of ODS steels applied to advanced nuclear energy systems. Mater Rep, 2019, 33(1): 78

    徐帥, 陳靈芝, 曹書光, 等. 先進核能系統用ODS鋼的顯微組織設計與調控研究進展. 材料導報, 2019, 33(1):78
    [16] Allen T R, Gan J, Cole J I, et al. Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation. J Nucl Mater, 2008, 375(1): 26 doi: 10.1016/j.jnucmat.2007.11.001
    [17] Zinkle S J, Boutard J L, Hoelzer D T, et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications. Nucl Fusion, 2017, 57(9): 092005 doi: 10.1088/1741-4326/57/9/092005
    [18] Rahmanifard R, Farhangi H, Novinrooz A J. Effect of zirconium and tantalum on the microstructural characteristics of 12YWT ODS steel nanocomposite. J Alloys Compd, 2015, 622: 948 doi: 10.1016/j.jallcom.2014.11.018
    [19] Xu H J, Lu Z, Wang D M, et al. Effect of zirconium addition on the microstructure and mechanical properties of 15Cr-ODS ferritic Steels consolidated by hot isostatic pressing. Fusion Eng Des, 2017, 114: 33 doi: 10.1016/j.fusengdes.2016.11.011
    [20] Cao S G, Zhou Z J. Microstructure and mechanical properties of an ODS ferritic steel with very low Cr content. J Nucl Mater, 2021, 551: 152971 doi: 10.1016/j.jnucmat.2021.152971
    [21] Xu Y L, Zhou Z J, Li M, et al. Fabrication and characterization of ODS austenitic steels. J Nucl Mater, 2011, 417(1-3): 283 doi: 10.1016/j.jnucmat.2010.12.155
    [22] Zhou Z J, Yang S, Chen W H, et al. Processing and characterization of a hipped oxide dispersion strengthened austenitic steel. J Nucl Mater, 2012, 428(1-3): 31 doi: 10.1016/j.jnucmat.2011.08.027
    [23] Oka H, Watanabe M, Kinoshita H, et al. In situ observation of damage structure in ODS austenitic steel during electron irradiation. J Nucl Mater, 2011, 417(1-3): 279 doi: 10.1016/j.jnucmat.2010.12.156
    [24] Zhang H K, Yao Z W, Zhou Z J, et al. Radiation induced microstructures in ODS 316 austenitic steel under dual-beam ions. J Nucl Mater, 2014, 455(1-3): 242 doi: 10.1016/j.jnucmat.2014.06.024
    [25] Dong H Q. Effect of ZR, HF Addition on the Microstructure and Tensile Properties of FeCrAl-ODS Steels [Dissertation]. Tianjin: Tianjin University, 2017

    董紅慶. Zr、Hf−對Fe−Cr−Al系ODS鋼顯微組織和拉伸性能的影響[學位論文]. 天津: 天津大學, 2017
    [26] Liu J. Research on tensile behavior of domestic fast reactor cladding material 15Ni?15Cr stainless steel. Ind Sci Tribune, 2018, 17(10): 45 doi: 10.3969/j.issn.1673-5641.2018.10.022

    劉健. 國產快堆包殼材料15-15Ti不銹鋼的拉伸行為研究. 產業與科技論壇, 2018, 17(10):45 doi: 10.3969/j.issn.1673-5641.2018.10.022
    [27] Zhuang Y, Zhang X Y, Peng T, et al. Effects of yttrium oxides on the microstructure and mechanical properties of 15-15Ti ODS alloy fabricated by casting. Mater Charact, 2020, 162: 110228 doi: 10.1016/j.matchar.2020.110228
    [28] Xu S, Zhou Z J, Jia H D. Research progress and prospect of strength-ductility trade-off about irradiation resistant ODS F/M steel. At Energy Sci Technol, 2019, 53(10): 1885

    徐帥, 周張健, 賈皓東. 先進反應堆用ODS F/M鋼的強韌性匹配研究進展. 原子能科學技術, 2019, 53(10):1885
  • 加載中
圖(9) / 表(4)
計量
  • 文章訪問數:  538
  • HTML全文瀏覽量:  204
  • PDF下載量:  84
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-07-28
  • 網絡出版日期:  2021-09-28
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回