<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高超音速火焰噴涂粒子飛行行為研究

王文瑞 張峰 張佳明 張賀強

王文瑞, 張峰, 張佳明, 張賀強. 高超音速火焰噴涂粒子飛行行為研究[J]. 工程科學學報, 2022, 44(2): 217-227. doi: 10.13374/j.issn2095-9389.2021.07.24.001
引用本文: 王文瑞, 張峰, 張佳明, 張賀強. 高超音速火焰噴涂粒子飛行行為研究[J]. 工程科學學報, 2022, 44(2): 217-227. doi: 10.13374/j.issn2095-9389.2021.07.24.001
WANG Wen-rui, ZHANG Feng, ZHANG Jia-ming, ZHANG He-qiang. Particle flight behavior in hypersonic flame spraying[J]. Chinese Journal of Engineering, 2022, 44(2): 217-227. doi: 10.13374/j.issn2095-9389.2021.07.24.001
Citation: WANG Wen-rui, ZHANG Feng, ZHANG Jia-ming, ZHANG He-qiang. Particle flight behavior in hypersonic flame spraying[J]. Chinese Journal of Engineering, 2022, 44(2): 217-227. doi: 10.13374/j.issn2095-9389.2021.07.24.001

高超音速火焰噴涂粒子飛行行為研究

doi: 10.13374/j.issn2095-9389.2021.07.24.001
基金項目: 國家重點研發計劃資助項目(2020YFA0405700)
詳細信息
    通訊作者:

    E-mail: gmbitwrw@ustb.edu.cn

  • 中圖分類號: TG174.442

Particle flight behavior in hypersonic flame spraying

More Information
  • 摘要: 以高超音速火焰噴槍為研究對象,采用計算流體力學軟件Fluent對高超音速火焰噴涂(HVOF)過程中的焰流流場以及粒子飛行過程進行數值模擬。HVOF系統以氧氣為助燃氣體,煤油為燃料。研究了加入粒子前噴槍內火焰焰流溫度、速度和壓力分布規律,采用離散相模型計算噴涂粒子的動力學飛行行為,探究了粒子大小、注入速度、球形度對粒子飛行行為的影響。發現最佳粒子粒徑范圍應為30~50 μm,在此范圍內粒子均勻的分布在焰流中心,且為熔融狀態,更易形成結合強度較高的涂層;小粒徑粒子最佳注入速度為10~15 m·s?1,中等粒徑粒子最佳注入速度為5~10 m·s?1,大粒徑粒子最佳注入速度為1~5 m·s?1;與球形顆粒相比,非球形顆粒具有較高的阻力系數,在飛行過程中獲得更大的動能和更少的熱量。

     

  • 圖  1  超音速火焰噴槍示意圖

    Figure  1.  Schematic diagram of a supersonic flame spray gun

    圖  2  噴槍及外流場的幾何模型

    Figure  2.  Geometric model of a spray gun and external flow field

    圖  3  噴槍及外流場的網格劃分情況

    Figure  3.  Grid division of a spray gun and external flow field

    圖  4  不同網格質量下溫度結果對比. (a) 粗化網格結果; (b) 正常密度網格結果; (c) 細化網格結果; (d) 極細化網格

    Figure  4.  Temperature results under different mesh qualities: (a) coarse mesh; (b) medium mesh; (c) fine mesh; (d) finer mesh

    圖  5  噴槍焰流特征分布云圖. (a) 焰流溫度; (b) 焰流速度; (c) 焰流壓強

    Figure  5.  Flame flow characteristic distributions of a spray gun: (a) flame temperature; (b) flame velocity; (c) flame pressure

    圖  6  鐵基非晶合金粉末研究路線圖

    Figure  6.  Research roadmap of Fe-based amorphous alloy powders

    圖  7  鐵基非晶合金粉末SEM形貌圖

    Figure  7.  Scanning electron microscope image of a Fe-based amorphous alloy powder

    圖  8  鐵基非晶合金粉末XRD圖譜

    Figure  8.  X-ray diffraction pattern of a Fe-based amorphous alloy powder

    圖  9  不同工藝參數下不同粒徑的粒子飛行軌跡. (a) n=4; (b) n=4.5; (c) n=5; (d) n=5.5

    Figure  9.  Flight trajectories of different particle sizes under different process parameters: (a) n=4; (b) n=4.5; (c) n=5; (d) n=5.5

    圖  10  不同工藝參數下不同粒徑的粒子飛行速度. (a) n=4; (b)n=4.5; (c)n=5

    Figure  10.  Flight velocities of different particle sizes under different process parameters: (a)n=4; (b) n=4.5; (c) n=5

    圖  11  不同工藝參數下不同粒徑的粒子溫度曲線. (a) n=4; (b) n=4.5; (c) n=5

    Figure  11.  Temperature curves of different particle sizes under different process parameters: (a) n=4; (b) n=4.5; (c) n=5

    圖  12  不同注入速度下粒子的運動軌跡. (a) vy =1 m?s?1; (b) vy =5 m?s?1; (c) vy =10 m?s?1; (d) vy =15 m?s?1

    Figure  12.  Flight trajectories of particles under different injection velocities: (a) vy =1 m?s?1; (b) vy =5 m?s?1; (c) vy =10 m?s?1; (d) vy =15 m?s?1

    圖  13  不同注入速度下不同粒徑的粒子飛行速度. (a) d=5 μm; (b) d=40 μm; (c) d=70 μm

    Figure  13.  Flight velocities of different particle sizes under different injection velocities: (a) d=5 μm; (b) d=40 μm; (c) d=70 μm

    圖  14  注入速度對不同粒徑的粒子溫度影響. (a) d=5 μm; (b) d=40 μm; (c) d=70 μm

    Figure  14.  Flight temperatures of different particle sizes under different injection velocities: (a) d=5 μm; (b) d=40 μm; (c) d=70 μm

    圖  15  不同SF的粒子運動軌跡曲線

    Figure  15.  Flight trajectories of particles with different shape factors

    圖  16  不同SF的粒子飛行速度曲線

    Figure  16.  Flight velocities of particles with different shape factors

    圖  17  不同SF的粒子溫度變化曲線

    Figure  17.  Temperature curves of particles with different shape factors

    表  1  噴槍幾何參數

    Table  1.   Geometric parameters of a spray gun

    Geometric parameterLength/ mmDiameter/ mm
    Combustion chamber92.537.8
    Nozzle37.57.9
    Barrel111.111
    Outer flow field400220
    下載: 導出CSV

    表  2  鐵基非晶顆粒材料物性

    Table  2.   Physical properties of iron-based amorphous granular materials

    Density/ (kg?m?3)Specific heat capacity/ (J?kg?1?K?1)Melting point/ K
    77005201388
    下載: 導出CSV

    表  3  不同粒徑范圍粒子最適注入速度

    Table  3.   Optimum injection velocities for different particle size ranges

    Particle diameter/ μmInjection speed/ (m?s?1)
    5?2010?15
    30?505?10
    60?701?5
    下載: 導出CSV

    表  4  不同球形度的粒子形狀

    Table  4.   Particle shapes under different shape factors (SF)

    Shape factorShape
    1
    0.9
    0.8
    <0.8
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhou Z, Wang L, Wang F C, et al. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying. Surf Coat Technol, 2009, 204(5): 563 doi: 10.1016/j.surfcoat.2009.08.025
    [2] Zhou Z, Wang L, He D Y, et al. Microstructure and wear resistance of Fe-based amorphous metallic coatings prepared by HVOF thermal spraying. J Therm Spray Technol, 2010, 19(6): 1287 doi: 10.1007/s11666-010-9556-2
    [3] Pan J J, Hu S S, Yang L J, et al. Numerical analysis of flame and particle behavior in an HVOF thermal spray process. Mater Des, 2016, 96: 370 doi: 10.1016/j.matdes.2016.02.008
    [4] Kamnis S, Gu S. Study of in-flight and impact dynamics of nonspherical particles from HVOF guns. J Therm Spray Technol, 2010, 19(1-2): 31 doi: 10.1007/s11666-009-9382-6
    [5] Bang S S, Park Y C, Lee J W, et al. Effect of the spray distance on the properties of high velocity oxygen-fuel (HVOF) sprayed WC-12Co coatings. J Nanosci Nanotechnol, 2018, 18(3): 1931 doi: 10.1166/jnn.2018.14990
    [6] Feng C, Zhu R, Han B C, et al. Effect of nozzle exit wear on the fluid flow characteristics of supersonic oxygen lance. Metall Mater Trans B, 2020, 51(1): 187 doi: 10.1007/s11663-019-01722-w
    [7] Tabbara H, Gu S. Computational simulation of liquid-fuelled HVOF thermal spraying. Surf Coat Technol, 2009, 204(5): 676 doi: 10.1016/j.surfcoat.2009.09.005
    [8] Patel J R, Agrawal D H, Patel C P. Influence of sensitive parameters and flow characteristics in HVOF coating. Procedia Eng, 2012, 38: 1367 doi: 10.1016/j.proeng.2012.06.170
    [9] Wang H G, Yuan X J, Hou G L, et al. Dynamic simulation of Ni particle behaviors in supersonic oxygen/air fuel spray process. Acta Armamentarii, 2006, 27(2): 310 doi: 10.3321/j.issn:1000-1093.2006.02.027

    王漢功, 袁曉靜, 侯根良, 等. 超音速火焰噴涂Ni粒子特性數值仿真. 兵工學報, 2006, 27(2):310 doi: 10.3321/j.issn:1000-1093.2006.02.027
    [10] Wang J W, Li Z. Influence of geometric parameters of D-jet spray Gun on the flow behavior of HVOF field. J Combust Sci Technol, 2014, 20(1): 26

    王建文, 李智. D-jet噴嘴幾何參數對超音速噴射流場的影響. 燃燒科學與技術, 2014, 20(1):26
    [11] He X B, Wu N C, Zhang S D, et al. Spraying distance effect on the porosity of Fe-based amorphous coatings. Mater Sci Technol, 2020, 28(1): 31 doi: 10.11951/j.issn.1005-0299.20180346

    何新寶, 吳念初, 張鎖德, 等. 噴涂距離對Fe基非晶涂層孔隙影響的研究. 材料科學與工藝, 2020, 28(1):31 doi: 10.11951/j.issn.1005-0299.20180346
    [12] Liu F H, Sun D B, Zhu R, et al. Effect of shrouding gas temperature on characteristics of a supersonic jet flow field with a shrouding Laval nozzle structure. Metall Mater Trans B, 2018, 49(4): 2050 doi: 10.1007/s11663-018-1272-1
    [13] Liu F H, Sun D B, Zhu R, et al. Characteristics of flow field for supersonic oxygen multijets with various Laval nozzle structures. Metall Mater Trans B, 2019, 50(5): 2362 doi: 10.1007/s11663-019-01652-7
    [14] Liu F H, Zhu R, Dong K, et al. Effect of Laval nozzle structure on behaviors of supersonic oxygen jet flow field. Chin J Eng, 2020, 42(Suppl 1): 54

    劉福海, 朱榮, 董凱, 等. 拉瓦爾噴管結構模式對超音速射流流動特性的影響. 工程科學學報, 2020, 42(增刊1): 54
    [15] Li M H, Shi D, Christofides P D. Diamond jet hybrid HVOF thermal spray: Gas-phase and particle behavior modeling and feedback control design. Ind Eng Chem Res, 2004, 43(14): 3632 doi: 10.1021/ie030559i
    [16] Li M H, Christofides P D. Multi-scale modeling and analysis of an industrial HVOF thermal spray process. Chem Eng Sci, 2005, 60(13): 3649 doi: 10.1016/j.ces.2005.02.043
    [17] Wang Y Z, Zhang Y A, Sun Y W, et al. Numerical modeling of gas flow field in high velocity oxygen-fuel thermal spray Gun. Ordnance Mater Sci Eng, 2012, 35(2): 39

    王引真, 張永昂, 孫玉偉, 等. 超音速火焰噴槍氣體流場的數值模擬分析. 兵器材料科學與工程, 2012, 35(2):39
    [18] Li Z L, Zhang L L, Cang D Q. Modeling study on the entrainment of the supersonic jet at high ambient temperature. J Eng Thermophys, 2018, 39(3): 545

    李子亮, 張玲玲, 蒼大強. 超音速射流在高溫氣體環境中引射特性的模擬研究. 工程熱物理學報, 2018, 39(3):545
    [19] Zhang S L, Li C X, Li C J, et al. Application of high velocity oxygen fuel flame (HVOF) spraying to fabrication of La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte for solid oxide fuel cells. J Power Sources, 2016, 301: 62
    [20] Zeoli N, Gu S, Kamnis S. Numerical simulation of in-flight particle oxidation during thermal spraying. Comput Chem Eng, 2008, 32(7): 1661 doi: 10.1016/j.compchemeng.2007.08.008
    [21] Li C, Gao X, Zhang D C, et al. Numerical investigation on the flame characteristics and particle behaviors in a HVOF spray process using kerosene as fuel. J Therm Spray Technol, 2021, 30(3): 725 doi: 10.1007/s11666-021-01165-3
    [22] Wang X G, Song Q Z, Yu Z Y. Numerical investigation of combustion and flow dynamics in a high velocity oxygen-fuel thermal spray Gun. J Therm Spray Technol, 2016, 25(3): 441 doi: 10.1007/s11666-015-0362-8
    [23] Cui C, Hu J, Lu G X, et al. Numerical modeling of HVOF flame and in-flight particle. Therm Spray Technol, 2010, 2(3): 18 doi: 10.3969/j.issn.1674-7127.2010.03.004

    崔崇, 胡江, 陸冠雄, 等. 超音速火焰噴涂焰流和粒子流的數值模擬研究. 熱噴涂技術, 2010, 2(3):18 doi: 10.3969/j.issn.1674-7127.2010.03.004
    [24] Gaona M, Lima R S, Marple B R. Influence of particle temperature and velocity on the microstructure and mechanical behaviour of high velocity oxy-fuel (HVOF)-sprayed nanostructured titania coatings. J Mater Process Technol, 2008, 198(1-3): 426 doi: 10.1016/j.jmatprotec.2007.07.024
    [25] Khan M N, Shamim T. Investigation of a dual-stage high velocity oxygen fuel thermal spray system. Appl Energy, 2014, 130: 853 doi: 10.1016/j.apenergy.2014.03.075
  • 加載中
圖(17) / 表(4)
計量
  • 文章訪問數:  573
  • HTML全文瀏覽量:  228
  • PDF下載量:  37
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-07-24
  • 網絡出版日期:  2021-09-18
  • 刊出日期:  2022-02-15

目錄

    /

    返回文章
    返回