-
摘要: 以高超音速火焰噴槍為研究對象,采用計算流體力學軟件Fluent對高超音速火焰噴涂(HVOF)過程中的焰流流場以及粒子飛行過程進行數值模擬。HVOF系統以氧氣為助燃氣體,煤油為燃料。研究了加入粒子前噴槍內火焰焰流溫度、速度和壓力分布規律,采用離散相模型計算噴涂粒子的動力學飛行行為,探究了粒子大小、注入速度、球形度對粒子飛行行為的影響。發現最佳粒子粒徑范圍應為30~50 μm,在此范圍內粒子均勻的分布在焰流中心,且為熔融狀態,更易形成結合強度較高的涂層;小粒徑粒子最佳注入速度為10~15 m·s?1,中等粒徑粒子最佳注入速度為5~10 m·s?1,大粒徑粒子最佳注入速度為1~5 m·s?1;與球形顆粒相比,非球形顆粒具有較高的阻力系數,在飛行過程中獲得更大的動能和更少的熱量。Abstract: High velocity oxygen fuel (HVOF) coatings have high bonding strengths and compactness, which can improve the wear, corrosion, and fatigue resistance of an underlying matrix. These coatings are widely used in chemical industries, metallurgy, aerospace, and other fields. Here, we studied hypersonic flame spraying through simulating flame flow fields and particle flight processes using the computational fluid dynamics software Fluent. The HVOF system uses oxygen as a combustion-supporting gas and kerosene as fuel. The temperature, velocity, and pressure distributions of the flame flow in a spray gun before adding particles were studied. The dynamic flight behavior of spray particles was calculated using a discrete phase model, and the effects of particle size, injection velocity, and sphericity on particle trajectory, velocity, and temperature were investigated. The optimal particle size range was 30–50 μm. Particles that were too large collided with the inner walls of the spray gun, hindering the combination of the particles and matrix. Particles that were too small were liquid during flight, and readily reacted with oxygen, leading to a reduction in the amorphous content of the prepared coatings. In the optimal size range, particles were uniformly distributed in the center of the flame flow, and the particles were in a molten state, ideal for forming coatings with higher bonding strengths. A systematic study of injection velocities on spray particle dynamics, determined the optimal injection velocity for small, medium, and large particles as 10–15, 5–10, and 1–5 m·s?1, respectively. Compared with spherical particles, nonspherical particles had higher drag coefficients, greater acceleration in the flow field of the flame, and gained more kinetic energy and less heat during flight.
-
Key words:
- HVOF thermal spraying /
- numerical simulation /
- fluid dynamics /
- Laval nozzle /
- flight behavior
-
表 1 噴槍幾何參數
Table 1. Geometric parameters of a spray gun
Geometric parameter Length/ mm Diameter/ mm Combustion chamber 92.5 37.8 Nozzle 37.5 7.9 Barrel 111.1 11 Outer flow field 400 220 表 2 鐵基非晶顆粒材料物性
Table 2. Physical properties of iron-based amorphous granular materials
Density/ (kg?m?3) Specific heat capacity/ (J?kg?1?K?1) Melting point/ K 7700 520 1388 表 3 不同粒徑范圍粒子最適注入速度
Table 3. Optimum injection velocities for different particle size ranges
Particle diameter/ μm Injection speed/ (m?s?1) 5?20 10?15 30?50 5?10 60?70 1?5 表 4 不同球形度的粒子形狀
Table 4. Particle shapes under different shape factors (SF)
Shape factor Shape 1 0.9 0.8 <0.8 www.77susu.com -
參考文獻
[1] Zhou Z, Wang L, Wang F C, et al. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying. Surf Coat Technol, 2009, 204(5): 563 doi: 10.1016/j.surfcoat.2009.08.025 [2] Zhou Z, Wang L, He D Y, et al. Microstructure and wear resistance of Fe-based amorphous metallic coatings prepared by HVOF thermal spraying. J Therm Spray Technol, 2010, 19(6): 1287 doi: 10.1007/s11666-010-9556-2 [3] Pan J J, Hu S S, Yang L J, et al. Numerical analysis of flame and particle behavior in an HVOF thermal spray process. Mater Des, 2016, 96: 370 doi: 10.1016/j.matdes.2016.02.008 [4] Kamnis S, Gu S. Study of in-flight and impact dynamics of nonspherical particles from HVOF guns. J Therm Spray Technol, 2010, 19(1-2): 31 doi: 10.1007/s11666-009-9382-6 [5] Bang S S, Park Y C, Lee J W, et al. Effect of the spray distance on the properties of high velocity oxygen-fuel (HVOF) sprayed WC-12Co coatings. J Nanosci Nanotechnol, 2018, 18(3): 1931 doi: 10.1166/jnn.2018.14990 [6] Feng C, Zhu R, Han B C, et al. Effect of nozzle exit wear on the fluid flow characteristics of supersonic oxygen lance. Metall Mater Trans B, 2020, 51(1): 187 doi: 10.1007/s11663-019-01722-w [7] Tabbara H, Gu S. Computational simulation of liquid-fuelled HVOF thermal spraying. Surf Coat Technol, 2009, 204(5): 676 doi: 10.1016/j.surfcoat.2009.09.005 [8] Patel J R, Agrawal D H, Patel C P. Influence of sensitive parameters and flow characteristics in HVOF coating. Procedia Eng, 2012, 38: 1367 doi: 10.1016/j.proeng.2012.06.170 [9] Wang H G, Yuan X J, Hou G L, et al. Dynamic simulation of Ni particle behaviors in supersonic oxygen/air fuel spray process. Acta Armamentarii, 2006, 27(2): 310 doi: 10.3321/j.issn:1000-1093.2006.02.027王漢功, 袁曉靜, 侯根良, 等. 超音速火焰噴涂Ni粒子特性數值仿真. 兵工學報, 2006, 27(2):310 doi: 10.3321/j.issn:1000-1093.2006.02.027 [10] Wang J W, Li Z. Influence of geometric parameters of D-jet spray Gun on the flow behavior of HVOF field. J Combust Sci Technol, 2014, 20(1): 26王建文, 李智. D-jet噴嘴幾何參數對超音速噴射流場的影響. 燃燒科學與技術, 2014, 20(1):26 [11] He X B, Wu N C, Zhang S D, et al. Spraying distance effect on the porosity of Fe-based amorphous coatings. Mater Sci Technol, 2020, 28(1): 31 doi: 10.11951/j.issn.1005-0299.20180346何新寶, 吳念初, 張鎖德, 等. 噴涂距離對Fe基非晶涂層孔隙影響的研究. 材料科學與工藝, 2020, 28(1):31 doi: 10.11951/j.issn.1005-0299.20180346 [12] Liu F H, Sun D B, Zhu R, et al. Effect of shrouding gas temperature on characteristics of a supersonic jet flow field with a shrouding Laval nozzle structure. Metall Mater Trans B, 2018, 49(4): 2050 doi: 10.1007/s11663-018-1272-1 [13] Liu F H, Sun D B, Zhu R, et al. Characteristics of flow field for supersonic oxygen multijets with various Laval nozzle structures. Metall Mater Trans B, 2019, 50(5): 2362 doi: 10.1007/s11663-019-01652-7 [14] Liu F H, Zhu R, Dong K, et al. Effect of Laval nozzle structure on behaviors of supersonic oxygen jet flow field. Chin J Eng, 2020, 42(Suppl 1): 54劉福海, 朱榮, 董凱, 等. 拉瓦爾噴管結構模式對超音速射流流動特性的影響. 工程科學學報, 2020, 42(增刊1): 54 [15] Li M H, Shi D, Christofides P D. Diamond jet hybrid HVOF thermal spray: Gas-phase and particle behavior modeling and feedback control design. Ind Eng Chem Res, 2004, 43(14): 3632 doi: 10.1021/ie030559i [16] Li M H, Christofides P D. Multi-scale modeling and analysis of an industrial HVOF thermal spray process. Chem Eng Sci, 2005, 60(13): 3649 doi: 10.1016/j.ces.2005.02.043 [17] Wang Y Z, Zhang Y A, Sun Y W, et al. Numerical modeling of gas flow field in high velocity oxygen-fuel thermal spray Gun. Ordnance Mater Sci Eng, 2012, 35(2): 39王引真, 張永昂, 孫玉偉, 等. 超音速火焰噴槍氣體流場的數值模擬分析. 兵器材料科學與工程, 2012, 35(2):39 [18] Li Z L, Zhang L L, Cang D Q. Modeling study on the entrainment of the supersonic jet at high ambient temperature. J Eng Thermophys, 2018, 39(3): 545李子亮, 張玲玲, 蒼大強. 超音速射流在高溫氣體環境中引射特性的模擬研究. 工程熱物理學報, 2018, 39(3):545 [19] Zhang S L, Li C X, Li C J, et al. Application of high velocity oxygen fuel flame (HVOF) spraying to fabrication of La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte for solid oxide fuel cells. J Power Sources, 2016, 301: 62 [20] Zeoli N, Gu S, Kamnis S. Numerical simulation of in-flight particle oxidation during thermal spraying. Comput Chem Eng, 2008, 32(7): 1661 doi: 10.1016/j.compchemeng.2007.08.008 [21] Li C, Gao X, Zhang D C, et al. Numerical investigation on the flame characteristics and particle behaviors in a HVOF spray process using kerosene as fuel. J Therm Spray Technol, 2021, 30(3): 725 doi: 10.1007/s11666-021-01165-3 [22] Wang X G, Song Q Z, Yu Z Y. Numerical investigation of combustion and flow dynamics in a high velocity oxygen-fuel thermal spray Gun. J Therm Spray Technol, 2016, 25(3): 441 doi: 10.1007/s11666-015-0362-8 [23] Cui C, Hu J, Lu G X, et al. Numerical modeling of HVOF flame and in-flight particle. Therm Spray Technol, 2010, 2(3): 18 doi: 10.3969/j.issn.1674-7127.2010.03.004崔崇, 胡江, 陸冠雄, 等. 超音速火焰噴涂焰流和粒子流的數值模擬研究. 熱噴涂技術, 2010, 2(3):18 doi: 10.3969/j.issn.1674-7127.2010.03.004 [24] Gaona M, Lima R S, Marple B R. Influence of particle temperature and velocity on the microstructure and mechanical behaviour of high velocity oxy-fuel (HVOF)-sprayed nanostructured titania coatings. J Mater Process Technol, 2008, 198(1-3): 426 doi: 10.1016/j.jmatprotec.2007.07.024 [25] Khan M N, Shamim T. Investigation of a dual-stage high velocity oxygen fuel thermal spray system. Appl Energy, 2014, 130: 853 doi: 10.1016/j.apenergy.2014.03.075 -