<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于變量選擇的尖點突變模型的兩步構建方法

張明 付冬梅 程學群 楊丙坤 郝文魁 陳云 邵立珍

張明, 付冬梅, 程學群, 楊丙坤, 郝文魁, 陳云, 邵立珍. 基于變量選擇的尖點突變模型的兩步構建方法[J]. 工程科學學報, 2023, 45(1): 128-136. doi: 10.13374/j.issn2095-9389.2021.07.19.006
引用本文: 張明, 付冬梅, 程學群, 楊丙坤, 郝文魁, 陳云, 邵立珍. 基于變量選擇的尖點突變模型的兩步構建方法[J]. 工程科學學報, 2023, 45(1): 128-136. doi: 10.13374/j.issn2095-9389.2021.07.19.006
ZHANG Ming, FU Dong-mei, CHENG Xue-qun, YANG Bing-kun, HAO Wen-kui, CHEN Yun, SHAO Li-zhen. A two-step method for cusp catastrophe model construction based on the selection of important variables[J]. Chinese Journal of Engineering, 2023, 45(1): 128-136. doi: 10.13374/j.issn2095-9389.2021.07.19.006
Citation: ZHANG Ming, FU Dong-mei, CHENG Xue-qun, YANG Bing-kun, HAO Wen-kui, CHEN Yun, SHAO Li-zhen. A two-step method for cusp catastrophe model construction based on the selection of important variables[J]. Chinese Journal of Engineering, 2023, 45(1): 128-136. doi: 10.13374/j.issn2095-9389.2021.07.19.006

基于變量選擇的尖點突變模型的兩步構建方法

doi: 10.13374/j.issn2095-9389.2021.07.19.006
基金項目: 科技部科技基礎資源調查專項資助項目(2019FY101404);國家電網公司總部科技資助項目(5200-202058470A-0-0-00);北京科技大學順德研究生院科技創新基金資助項目(BK20AE004)
詳細信息
    通訊作者:

    付冬梅, E-mail: fdm_ustb@ustb.edu.cn

    程學群,chengxuequn@ustb.edu.cn

  • 中圖分類號: O192;TP181

A two-step method for cusp catastrophe model construction based on the selection of important variables

More Information
  • 摘要: 突變是工程實踐過程中廣泛存在的現象。當系統的狀態發生跳躍性變化時,基于微積分的傳統數學建模方法精度較低,人工神經網絡等機器學習算法無法對突變現象作出合理的解釋。基于突變理論的尖點突變模型可以用來解釋系統狀態的不連續變化,然而在輸入變量維度較大的情況下,傳統的尖點突變模型復雜度高且精度較差。為了解決這一問題,提出了一種基于變量選擇的尖點突變模型的兩步構建方法。第一步,利用多模型集成重要變量選擇算法(MEIVS)量化待選變量的重要性并提取重要變量;第二步,基于極大似然法(MLE)利用所提取的重要變量構建尖點突變模型。仿真結果表明,在具有突變特征的數據集上,通過MEIVS降維后的尖點突變模型在評價指標上優于線性模型、Logistic模型和通過其他方法降維的尖點突變模型,并且可以用來解釋研究對象的不連續變化。

     

  • 圖  1  尖點突變模型的平衡曲面和控制平面

    Figure  1.  Equilibrium surface and control plane of the cusp catastrophe model

    圖  2  MEIVS算法流程圖. (a) MEIVS算法主流程; (b) 排列算法流程

    Figure  2.  MEIVS algorithm flowchart: (a) main process steps of the MEIVS algorithm; (b) process steps of the permutation algorithm

    圖  3  每日住宿價格的概率密度非參數估計

    Figure  3.  Nonparametric estimation of the probability density of the daily accommodation price

    圖  4  歐洲旅館住宿價格數據集待選變量重要性得分

    Figure  4.  Importance score of the variables to be selected in the European hotel accommodation price dataset

    圖  5  歐洲旅館住宿價格數據在控制平面 (a) 和平衡曲面(b) 上的分布

    Figure  5.  Distribution of the European hotel accommodation price dataset on the control plane (a) and equilibrium surface (b)

    圖  6  ACM采集到的電偶電流時間序列

    Figure  6.  Time series of the galvanic current collected by ACM

    圖  7  北京大氣腐蝕數據集待選變量重要性得分

    Figure  7.  Importance score of the variables to be selected in the Beijing atmospheric corrosion dataset

    圖  8  北京大氣腐蝕數據在控制平面(a)和平衡曲面(b)上的分布

    Figure  8.  Distribution of the Beijing atmospheric corrosion dataset on the control plane (a) and equilibrium surface (b)

    表  1  歐洲旅館住宿價格數據集建模結果評價

    Table  1.   Evaluation of the modeling results of the European hotel accommodation price dataset

    ModelNumber of parametersR2AICBIC
    Linear0.54913061323
    Logistic0.62612941324
    Cusp (based on the two-step method)120.727195228
    Cusp (based on the traditional method)160.697190235
    Cusp (based on SCC)100.572204232
    Cusp (based on MIC)60.421234251
    Cusp (based on RFVIM)120.565210243
    下載: 導出CSV

    表  2  北京大氣腐蝕數據集建模結果評價

    Table  2.   Evaluation of the modeling results of the Beijing atmospheric corrosion dataset

    ModelNumber of parametersR2AICBIC
    Linear0.66821802203
    Logistic0.75519702011
    Cusp (based on the two-step method)100.778670716
    Cusp (based on the traditional method)200.775672764
    Cusp (based on SCC)100.719816862
    Cusp (based on MIC)80.725820857
    Cusp (based on RFVIM)180.765673755
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Qiao C, Guo Y H, Li C H. Study on rock burst prediction of deep buried tunnel based on cusp catastrophe theory. Geotech Geol Eng, 2021, 39(2): 1101 doi: 10.1007/s10706-020-01547-4
    [2] Zhi Y J, Yang T, Fu D M. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels. J Mater Sci Technol, 2020, 49: 202 doi: 10.1016/j.jmst.2020.01.044
    [3] Pei J K, Wang F Y, Guo H H, et al. Cause analysis of chemical accidents based on improved cusp catastrophe model. China Saf Sci J, 2019, 29(7): 20 doi: 10.16265/j.cnki.issn1003-3033.2019.07.004

    裴甲坤, 王飛躍, 郭換換, 等. 基于改進尖點突變模型的化工事故致因分析. 中國安全科學學報, 2019, 29(7):20 doi: 10.16265/j.cnki.issn1003-3033.2019.07.004
    [4] Lin L. Stochastic cusp catastrophe model for Chinese stock market. J Syst Eng, 2016, 31(1): 55 doi: 10.13383/j.cnki.jse.2016.01.006

    林黎. 中國股票市場的隨機尖點突變模型. 系統工程學報, 2016, 31(1):55 doi: 10.13383/j.cnki.jse.2016.01.006
    [5] Barunik J, Kukacka J. Realizing stock market crashes: Stochastic cusp catastrophe model of returns under time-varying volatility. Quant Finance, 2015, 15(6): 959 doi: 10.1080/14697688.2014.950319
    [6] Ma Y R, Yi D, Hu B. Analysis of stochastic catastrophe mechanism of occupational well-being of nursing practitioner servicing for the elderly. J Syst Manag, 2021, 30(3): 526

    馬躍如, 易丹, 胡斌. 養老護理員工作幸福感的隨機突變機理. 系統管理學報, 2021, 30(3):526
    [7] Eladany M M, Eldesouky A A, Sallam A A. Power system transient stability: An algorithm for assessment and enhancement based on catastrophe theory and FACTS devices. IEEE Access, 2018, 6: 26424 doi: 10.1109/ACCESS.2018.2834906
    [8] Xiao X P, Duan H M. A new grey model for traffic flow mechanics. Eng Appl Artif Intell, 2020, 88: 103350 doi: 10.1016/j.engappai.2019.103350
    [9] Wei X, Fu D M, Chen M D, et al. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environmentAlloying Elements. J Mater Sci Technol, 2021, 64: 222 doi: 10.1016/j.jmst.2020.01.040
    [10] Pei Z B, Zhang D W, Zhi Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning. Corros Sci, 2020, 170: 108697 doi: 10.1016/j.corsci.2020.108697
    [11] Thom R. Structural Stability and Morphogenesis: An Outline of a General Theory of Models. London: Benjamin W A, 1975
    [12] Cobb L. Stochastic catastrophe models and multimodal distributions. Syst Res, 1978, 23(4): 360 doi: 10.1002/bs.3830230407
    [13] Cobb L, Zacks S. Applications of catastrophe theory for statistical modeling in the biosciences. J Am Stat Assoc, 1985, 80(392): 793 doi: 10.1080/01621459.1985.10478184
    [14] Zeeman E C. Catastrophe theory. Sci Am, 1976, 234(4): 65 doi: 10.1038/scientificamerican0476-65
    [15] Niu D X, Wang K K, Sun L J, et al. Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: A case study. Appl Soft Comput, 2020, 93: 106389 doi: 10.1016/j.asoc.2020.106389
    [16] Al-Fugara A, Ahmadlou M, Shatnawi R, et al. Novel hybrid models combining meta-heuristic algorithms with support vector regression (SVR) for groundwater potential mapping. Geocarto Int, 2020: 1
    [17] Zhang J L, da Xu, Hao K J, et al. FS-GBDT: Identification multicancer-risk module via a feature selection algorithm by integrating Fisher score and GBDT. Brief Bioinform, 2020, 22(3): bbaa189
    [18] Tsai C F, Sung Y T. Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches. Knowl Based Syst, 2020, 203: 106097 doi: 10.1016/j.knosys.2020.106097
    [19] Bolón-Canedo V, Alonso-Betanzos A. Ensembles for feature selection: A review and future trends. Inf Fusion, 2019, 52: 1 doi: 10.1016/j.inffus.2018.11.008
    [20] Pes B. Ensemble feature selection for high-dimensional data: A stability analysis across multiple domains. Neural Comput Appl, 2020, 32(10): 5951 doi: 10.1007/s00521-019-04082-3
    [21] Hartelman P A I, Maas H L J, Molenaar P C M. Detecting and modelling developmental transitions. Br J Dev Psychol, 1998, 16(1): 97 doi: 10.1111/j.2044-835X.1998.tb00751.x
    [22] Grasman R P P P, van der Maas H L J, Wagenmakers E J. Fitting the cusp catastrophe inR: AcuspPackage primer. J Stat Soft, 2009, 32(8): 1
    [23] Aaron F, Cynthia R, Francesca D. All models are wrong, but many are useful: learning a variable's importance by studying an entire class of prediction models simultaneously. J Machine Learning Research, 2019, 20(177): 1
    [24] Breiman L. Random forests. Machine Learning, 2001, 45(1): 5 doi: 10.1023/A:1010933404324
    [25] Buscema M. Back propagation neural networks. Subst Use Misuse, 1998, 33(2): 233 doi: 10.3109/10826089809115863
    [26] Karatzoglou A, Smola A, Hornik K, et al. Kernlab- AnS4Package for kernel methods inR. J Stat Soft, 2004, 11(9): 1
    [27] Amar Aladžuz. Hotels accommodation prices dataset [DB/OL]. Kaggle (2020-12-24) [2021-07-16].https://www.kaggle.com/aladzuzamar/hotels-accommodation-prices-dataset
    [28] Biecek P. DALEX: explainers for complex predictive models in R. J Mach Learn Res, 2018, 19(1): 3245
    [29] Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors. J Mater Sci Technol, 2021, 64: 214 doi: 10.1016/j.jmst.2020.01.023
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  812
  • HTML全文瀏覽量:  264
  • PDF下載量:  108
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-07-19
  • 網絡出版日期:  2021-11-01
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回