-
摘要: 高濃度尾砂料漿具有復雜的觸變性,顆粒粒徑是影響料漿觸變性的重要因素,顆粒粒徑對觸變性影響的定量研究尚不豐富。為探究高濃度尾砂膏體的顆粒粒徑對觸變性的影響,使用同種尾砂制備了不同平均粒徑的樣品并制成膏體,開展恒剪切速率實驗。結果表明,尾砂膏體具有顯著的觸變性,恒剪切速率條件下呈剪切稀化。穩態條件下,料漿靜態屈服應力、動態屈服應力、賓漢姆黏度均與顆粒平均粒徑平方的倒數呈線性正相關。瞬態條件下,顆粒平均粒徑和相應瞬態擬合參數呈線性關聯。推薦的穩態和觸變性模型均表現出較高的適用性。通過數據擬合構建了穩態剪切應力和瞬態剪切應力的預測模型,定量表征顆粒平均粒徑對觸變性料漿穩態和瞬態流變行為的影響。Abstract: High-concentration tailings pastes are commonly encountered in the surface deposition and underground cemented paste backfill. It is necessary to forecast the pressure loss along the pipe and the flow behavior in the mined-out area when tailings pastes are transported in a pipeline or stored up in goaf. Traditionally, thixotropy has often been overlooked while designing tailings paste transport and disposal systems due to the complexity of thixotropy characterization. However, thixotropy plays an essential role in the rheology of tailings pastes. To achieve the accurate representation of thixotropy, a suitable constitutive model has to be selected in advance. Unfortunately, there is no current available thixotropic model for tailings pastes up to date. Moreover, tailings pastes exhibit complex thixotropy that is significantly affected by the particle size of tailings, though the relevant studies are not abundant. It is important to analyze quantitively the relationship between particle size and thixotropic parameters based on an appropriate constitutive model. In this work, the constitutive thixotropic model for tailings pastes proposed by Zhang et al. was adopted. To reveal the influence of particle size on the thixotropy of tailings pastes, samples of various mean particle sizes prepared from the same tailings were applied to constant shear rate experiments. Results show that the target tailings pastes display significant thixotropy, leading to shear thinning under steady shear rates. In the steady state, the static yield stress, dynamic yield stress, and Bingham viscosity appear to correlate linearly to the reciprocal of the square of the mean particle size. As for the transient state, the corresponding fit parameters show a strong linear dependence on the mean particle size. The proposed equilibrium and thixotropic models are valid. The forecasting models for equilibrium and transient shear stress are established based on data fit, which is attributed to the quantitative characterization of steady-state and transient rheology for thixotropic tailings pastes under the effect of particle size.
-
Key words:
- particle size /
- tailings paste /
- thixotropy /
- rheological parameters /
- forecasting model
-
表 1 不同粒徑尾砂的粒徑分布結果
Table 1. Particle size distribution details for different tailings
Type of tailings ${D_{10}}$ ${D_{50}}$ ${D_{80}}$ ${D_{90}}$ $D\left[ {4,3} \right]$ 1# 1.448 20.198 68.568 98.549 37.003 2# 1.260 16.358 57.572 82.303 30.676 3# 1.130 13.895 48.810 70.219 26.167 4# 1.022 10.020 34.471 49.461 18.617 表 2 穩態流變曲線擬合參數
Table 2. Fit parameters of equilibrium rheological curves
Type of tailings ${\tau _{\text{B}}}$ ${\tau _{\text{D}}}$ ${\mu _{\text{B}}}$ $k$ Adjusted R-Square 1# 37.82 11.28 0.219 0.125 0.994 2# 43.54 12.65 0.224 0.144 0.989 3# 53.8 12.61 0.244 0.152 0.997 4# 72.92 15.24 0.277 0.197 0.977 www.77susu.com -
參考文獻
[1] Yin S H, Shao Y J, Wu A X, et al. A systematic review of paste technology in metal mines for cleaner production in China. J Clean Prod, 2020, 247: 119590 doi: 10.1016/j.jclepro.2019.119590 [2] Yang L H, Wang H J, Wu A X, et al. Thixotropy of unclassified pastes in the process of stirring and shearing. Chin J Eng, 2016, 38(10): 1343楊柳華, 王洪江, 吳愛祥, 等. 全尾砂膏體攪拌剪切過程的觸變性. 工程科學學報, 2016, 38(10):1343 [3] Mewis J, Wagner N J. Thixotropy. Adv Colloid Interface Sci, 2009, 147-148: 214 doi: 10.1016/j.cis.2008.09.005 [4] Barnes H A. Thixotropy—a review. J Non Newton Fluid Mech, 1997, 70(1-2): 1 doi: 10.1016/S0377-0257(97)00004-9 [5] Merrill J, Voisin L, Montenegro V, et al. Slurry rheology prediction based on hyperspectral characterization models for minerals quantification. Miner Eng, 2017, 109: 126 doi: 10.1016/j.mineng.2017.03.009 [6] Zhang L F, Wang H J, Wu A X, et al. A constitutive model for thixotropic cemented tailings backfill pastes. J Non Newton Fluid Mech, 2021, 295: 104548 doi: 10.1016/j.jnnfm.2021.104548 [7] Adiguzel D, Bascetin A. The investigation of effect of particle size distribution on flow behavior of paste tailings. J Environ Manag, 2019, 243: 393 doi: 10.1016/j.jenvman.2019.05.039 [8] Leong Y K, Scales P J, Healy T W, et al. Effect of particle size on colloidal zirconia rheology at the isoelectric point. J Am Ceram Soc, 1995, 78(8): 2209 doi: 10.1111/j.1151-2916.1995.tb08638.x [9] Boger D V. Rheology of slurries and environmental impacts in the mining industry. Annu Rev Chem Biomol Eng, 2013, 4: 239 doi: 10.1146/annurev-chembioeng-061312-103347 [10] Boger D V. Rheology and the minerals industry. Miner Process Extr Metall Rev, 2000, 20(1): 1 doi: 10.1080/08827509908962460 [11] Mangesana N, Chikuku R S, Mainza A N, et al. The effect of particle sizes and solids concentration on the rheology of silica sand based suspensions. J S Afr I Min Metall, 2008, 108(4): 237 [12] Cheng D C H, Kruszewski A P, Senior J R, et al. The effect of particle size distribution on the rheology of an industrial suspension. J Mater Sci, 1990, 25(1): 353 doi: 10.1007/BF00544230 [13] He M Z, Wang Y M, Forssberg E. Slurry rheology in wet ultrafine grinding of industrial minerals: A review. Powder Technol, 2004, 147(1-3): 94 doi: 10.1016/j.powtec.2004.09.032 [14] Liu X H, Wu A X, Wang H J, et al. Influence mechanism and calculation model of CPB rheological parameters. Chin J Eng, 2017, 39(2): 190劉曉輝, 吳愛祥, 王洪江, 等. 膏體流變參數影響機制及計算模型. 工程科學學報, 2017, 39(2):190 [15] Liu X H. Study on Rheological Behavior and Pipe Flow Resistance of Paste Backfill [Dissertation]. Beijing: University of Science and Technology Beijing, 2015劉曉輝. 膏體流變行為及其管流阻力特性研究[學位論文]. 北京: 北京科技大學, 2015 [16] Moore F. The rheology of ceramic slip and bodies. Trans Brit Ceram Soc, 1959, 58: 470 [17] Armstrong M J, Beris A N, Rogers S A, et al. Dynamic shear rheology and structure kinetics modeling of a thixotropic carbon black suspension. Rheol Acta, 2017, 56(10): 811 doi: 10.1007/s00397-017-1038-8 [18] Wei Y F, Solomon M J, Larson R G. Quantitative nonlinear thixotropic model with stretched exponential response in transient shear flows. J Rheol, 2016, 60(6): 1301 doi: 10.1122/1.4965228 [19] Cheng H Y. Characteristics of Rheological Parameters and Pipe Resistance under the Time-Temperature Effect [Dissertation]. Beijing: University of Science and Technology Beijing, 2018程海勇. 時−溫效應下膏體流變參數及管阻特性[學位論文]. 北京: 北京科技大學, 2018 [20] Yang L H. Research on the Rheological Characteristics and the Mechanism of Shear Action During Paste Mixing [Dissertation], Beijing: University of Science and Technology Beijing, 2020楊柳華. 膏體攪拌過程流變特性及剪切作用機制研究[學位論文]. 北京: 北京科技大學, 2020 [21] Derksen J J. Simulations of thixotropic liquids. Appl Math Model, 2011, 35(4): 1656 doi: 10.1016/j.apm.2010.09.042 [22] Kwak M, James D F, Klein K A. Flow behaviour of tailings paste for surface disposal. Int J Miner Process, 2005, 77(3): 139 doi: 10.1016/j.minpro.2005.06.001 [23] de Souza Mendes P R, Thompson R L. A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids. Rheol Acta, 2013, 52(7): 673 doi: 10.1007/s00397-013-0699-1 [24] Figoni P I, Shoemaker C F. Characterization of time dependent flow properties of mayonnaise under steady shear. J Texture Stud, 1983, 14(4): 431 doi: 10.1111/j.1745-4603.1983.tb00360.x [25] Tangsathitkulchai C. The effect of slurry rheology on fine grinding in a laboratory ball mill. Int J Miner Process, 2003, 69(1-4): 29 doi: 10.1016/S0301-7516(02)00061-3 [26] Roussel N. A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cem Concr Res, 2006, 36(10): 1797 doi: 10.1016/j.cemconres.2006.05.025 -