<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

顆粒粒徑對尾砂膏體觸變性的影響

張連富 王洪江 吳愛祥 楊科

張連富, 王洪江, 吳愛祥, 楊科. 顆粒粒徑對尾砂膏體觸變性的影響[J]. 工程科學學報, 2023, 45(1): 1-8. doi: 10.13374/j.issn2095-9389.2021.07.09.006
引用本文: 張連富, 王洪江, 吳愛祥, 楊科. 顆粒粒徑對尾砂膏體觸變性的影響[J]. 工程科學學報, 2023, 45(1): 1-8. doi: 10.13374/j.issn2095-9389.2021.07.09.006
ZHANG Lian-fu, WANG Hong-jiang, WU Ai-xiang, YANG Ke. Study of the effect of particle size on the thixotropy of tailings pastes[J]. Chinese Journal of Engineering, 2023, 45(1): 1-8. doi: 10.13374/j.issn2095-9389.2021.07.09.006
Citation: ZHANG Lian-fu, WANG Hong-jiang, WU Ai-xiang, YANG Ke. Study of the effect of particle size on the thixotropy of tailings pastes[J]. Chinese Journal of Engineering, 2023, 45(1): 1-8. doi: 10.13374/j.issn2095-9389.2021.07.09.006

顆粒粒徑對尾砂膏體觸變性的影響

doi: 10.13374/j.issn2095-9389.2021.07.09.006
基金項目: 國家自然科學基金重點資助項目(51834001);國家留學基金委資助項目;安徽理工大學引進人才科研啟動資金資助項目(2022yjrc59)
詳細信息
    通訊作者:

    E-mail: wanghj1988@126.com

  • 中圖分類號: TG142.71

Study of the effect of particle size on the thixotropy of tailings pastes

More Information
  • 摘要: 高濃度尾砂料漿具有復雜的觸變性,顆粒粒徑是影響料漿觸變性的重要因素,顆粒粒徑對觸變性影響的定量研究尚不豐富。為探究高濃度尾砂膏體的顆粒粒徑對觸變性的影響,使用同種尾砂制備了不同平均粒徑的樣品并制成膏體,開展恒剪切速率實驗。結果表明,尾砂膏體具有顯著的觸變性,恒剪切速率條件下呈剪切稀化。穩態條件下,料漿靜態屈服應力、動態屈服應力、賓漢姆黏度均與顆粒平均粒徑平方的倒數呈線性正相關。瞬態條件下,顆粒平均粒徑和相應瞬態擬合參數呈線性關聯。推薦的穩態和觸變性模型均表現出較高的適用性。通過數據擬合構建了穩態剪切應力和瞬態剪切應力的預測模型,定量表征顆粒平均粒徑對觸變性料漿穩態和瞬態流變行為的影響。

     

  • 圖  1  顆粒粒徑分布圖

    Figure  1.  Particle size distribution of tailings

    圖  2  恒剪切速率實驗剪切歷史設置

    Figure  2.  Set-up of shear history in the constant shear rate test

    圖  3  不同顆粒粒徑尾砂料漿的穩態流變曲線

    Figure  3.  Equilibrium rheological curves of tailings suspensions at various particle sizes

    圖  4  穩態流變模型各參數與${\bar \phi ^{ - 2}}$之間的關系

    Figure  4.  Relationships between parameters of the proposed equilibrium model and ${\bar \phi ^{ - 2}}$

    圖  5  不同顆粒平均粒徑和剪切速率下料漿穩態剪切應力曲面圖

    Figure  5.  Surface plot of equilibrium shear stress of suspensions at various mean particle sizes and shear rates

    圖  6  不同剪切速率下料漿剪切應力衰減曲線.(a)1#;(b)2#;(c)3#;(d)4#

    Figure  6.  Shear stress decay curves at various shear rates: (a) 1#; (b) 2#; (c) 3#; (d) 4#

    圖  7  參數$a$$\ln \dot \gamma $的關系曲線

    Figure  7.  Relationships of parameter $ \mathit{a} $ and $\ln \dot \gamma $

    圖  8  四種尾砂不同剪切速率下實驗值和預測值的比較.(a)1#;(b)2#;(c)3#;(d)4#

    Figure  8.  Comparison between experimental and predicted shear stress at various shear rates s for the four kinds of tailings: (a) 1#; (b) 2#; (c) 3#; (d) 4#

    圖  9  擬合參數與平均粒徑的關系曲線.(a)$A$;(b)$w$;(c)$\ln {\dot \gamma _0}$

    Figure  9.  Relationships of fit parameter and mean particle size: (a) $A$; (b) $w$; (c) $\ln {\dot \gamma _0}$

    圖  10  恒剪切速率條件下時間、顆粒平均粒徑與瞬態剪切應力的關系曲面圖

    Figure  10.  Three-dimensional graph of transient shear stress under the effects of time and mean particle size at constant shear rates

    表  1  不同粒徑尾砂的粒徑分布結果

    Table  1.   Particle size distribution details for different tailings

    Type of tailings${D_{10}}$${D_{50}}$${D_{80}}$${D_{90}}$$D\left[ {4,3} \right]$
    1#1.44820.19868.56898.54937.003
    2#1.26016.35857.57282.30330.676
    3#1.13013.89548.81070.21926.167
    4#1.02210.02034.47149.46118.617
    下載: 導出CSV

    表  2  穩態流變曲線擬合參數

    Table  2.   Fit parameters of equilibrium rheological curves

    Type of tailings${\tau _{\text{B}}}$${\tau _{\text{D}}}$${\mu _{\text{B}}}$$k$Adjusted R-Square
    1#37.8211.280.2190.1250.994
    2#43.5412.650.2240.1440.989
    3#53.812.610.2440.1520.997
    4#72.9215.240.2770.1970.977
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yin S H, Shao Y J, Wu A X, et al. A systematic review of paste technology in metal mines for cleaner production in China. J Clean Prod, 2020, 247: 119590 doi: 10.1016/j.jclepro.2019.119590
    [2] Yang L H, Wang H J, Wu A X, et al. Thixotropy of unclassified pastes in the process of stirring and shearing. Chin J Eng, 2016, 38(10): 1343

    楊柳華, 王洪江, 吳愛祥, 等. 全尾砂膏體攪拌剪切過程的觸變性. 工程科學學報, 2016, 38(10):1343
    [3] Mewis J, Wagner N J. Thixotropy. Adv Colloid Interface Sci, 2009, 147-148: 214 doi: 10.1016/j.cis.2008.09.005
    [4] Barnes H A. Thixotropy—a review. J Non Newton Fluid Mech, 1997, 70(1-2): 1 doi: 10.1016/S0377-0257(97)00004-9
    [5] Merrill J, Voisin L, Montenegro V, et al. Slurry rheology prediction based on hyperspectral characterization models for minerals quantification. Miner Eng, 2017, 109: 126 doi: 10.1016/j.mineng.2017.03.009
    [6] Zhang L F, Wang H J, Wu A X, et al. A constitutive model for thixotropic cemented tailings backfill pastes. J Non Newton Fluid Mech, 2021, 295: 104548 doi: 10.1016/j.jnnfm.2021.104548
    [7] Adiguzel D, Bascetin A. The investigation of effect of particle size distribution on flow behavior of paste tailings. J Environ Manag, 2019, 243: 393 doi: 10.1016/j.jenvman.2019.05.039
    [8] Leong Y K, Scales P J, Healy T W, et al. Effect of particle size on colloidal zirconia rheology at the isoelectric point. J Am Ceram Soc, 1995, 78(8): 2209 doi: 10.1111/j.1151-2916.1995.tb08638.x
    [9] Boger D V. Rheology of slurries and environmental impacts in the mining industry. Annu Rev Chem Biomol Eng, 2013, 4: 239 doi: 10.1146/annurev-chembioeng-061312-103347
    [10] Boger D V. Rheology and the minerals industry. Miner Process Extr Metall Rev, 2000, 20(1): 1 doi: 10.1080/08827509908962460
    [11] Mangesana N, Chikuku R S, Mainza A N, et al. The effect of particle sizes and solids concentration on the rheology of silica sand based suspensions. J S Afr I Min Metall, 2008, 108(4): 237
    [12] Cheng D C H, Kruszewski A P, Senior J R, et al. The effect of particle size distribution on the rheology of an industrial suspension. J Mater Sci, 1990, 25(1): 353 doi: 10.1007/BF00544230
    [13] He M Z, Wang Y M, Forssberg E. Slurry rheology in wet ultrafine grinding of industrial minerals: A review. Powder Technol, 2004, 147(1-3): 94 doi: 10.1016/j.powtec.2004.09.032
    [14] Liu X H, Wu A X, Wang H J, et al. Influence mechanism and calculation model of CPB rheological parameters. Chin J Eng, 2017, 39(2): 190

    劉曉輝, 吳愛祥, 王洪江, 等. 膏體流變參數影響機制及計算模型. 工程科學學報, 2017, 39(2):190
    [15] Liu X H. Study on Rheological Behavior and Pipe Flow Resistance of Paste Backfill [Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    劉曉輝. 膏體流變行為及其管流阻力特性研究[學位論文]. 北京: 北京科技大學, 2015
    [16] Moore F. The rheology of ceramic slip and bodies. Trans Brit Ceram Soc, 1959, 58: 470
    [17] Armstrong M J, Beris A N, Rogers S A, et al. Dynamic shear rheology and structure kinetics modeling of a thixotropic carbon black suspension. Rheol Acta, 2017, 56(10): 811 doi: 10.1007/s00397-017-1038-8
    [18] Wei Y F, Solomon M J, Larson R G. Quantitative nonlinear thixotropic model with stretched exponential response in transient shear flows. J Rheol, 2016, 60(6): 1301 doi: 10.1122/1.4965228
    [19] Cheng H Y. Characteristics of Rheological Parameters and Pipe Resistance under the Time-Temperature Effect [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    程海勇. 時−溫效應下膏體流變參數及管阻特性[學位論文]. 北京: 北京科技大學, 2018
    [20] Yang L H. Research on the Rheological Characteristics and the Mechanism of Shear Action During Paste Mixing [Dissertation], Beijing: University of Science and Technology Beijing, 2020

    楊柳華. 膏體攪拌過程流變特性及剪切作用機制研究[學位論文]. 北京: 北京科技大學, 2020
    [21] Derksen J J. Simulations of thixotropic liquids. Appl Math Model, 2011, 35(4): 1656 doi: 10.1016/j.apm.2010.09.042
    [22] Kwak M, James D F, Klein K A. Flow behaviour of tailings paste for surface disposal. Int J Miner Process, 2005, 77(3): 139 doi: 10.1016/j.minpro.2005.06.001
    [23] de Souza Mendes P R, Thompson R L. A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids. Rheol Acta, 2013, 52(7): 673 doi: 10.1007/s00397-013-0699-1
    [24] Figoni P I, Shoemaker C F. Characterization of time dependent flow properties of mayonnaise under steady shear. J Texture Stud, 1983, 14(4): 431 doi: 10.1111/j.1745-4603.1983.tb00360.x
    [25] Tangsathitkulchai C. The effect of slurry rheology on fine grinding in a laboratory ball mill. Int J Miner Process, 2003, 69(1-4): 29 doi: 10.1016/S0301-7516(02)00061-3
    [26] Roussel N. A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cem Concr Res, 2006, 36(10): 1797 doi: 10.1016/j.cemconres.2006.05.025
  • 加載中
圖(10) / 表(2)
計量
  • 文章訪問數:  640
  • HTML全文瀏覽量:  226
  • PDF下載量:  88
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-07-09
  • 網絡出版日期:  2021-10-08
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回