<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

模擬凍結法施工環境對大體積混凝土的性能影響

吳瑞東 劉娟紅 紀洪廣 車樹武 周昱程 張廣田

吳瑞東, 劉娟紅, 紀洪廣, 車樹武, 周昱程, 張廣田. 模擬凍結法施工環境對大體積混凝土的性能影響[J]. 工程科學學報, 2022, 44(5): 857-864. doi: 10.13374/j.issn2095-9389.2021.07.01.002
引用本文: 吳瑞東, 劉娟紅, 紀洪廣, 車樹武, 周昱程, 張廣田. 模擬凍結法施工環境對大體積混凝土的性能影響[J]. 工程科學學報, 2022, 44(5): 857-864. doi: 10.13374/j.issn2095-9389.2021.07.01.002
WU Rui-dong, LIU Juan-hong, JI Hong-guang, CHE Shu-wu, ZHOU Yu-cheng, ZHANG Guang-tian. Effects of a simulated freezing construction environment on the mass concrete performance[J]. Chinese Journal of Engineering, 2022, 44(5): 857-864. doi: 10.13374/j.issn2095-9389.2021.07.01.002
Citation: WU Rui-dong, LIU Juan-hong, JI Hong-guang, CHE Shu-wu, ZHOU Yu-cheng, ZHANG Guang-tian. Effects of a simulated freezing construction environment on the mass concrete performance[J]. Chinese Journal of Engineering, 2022, 44(5): 857-864. doi: 10.13374/j.issn2095-9389.2021.07.01.002

模擬凍結法施工環境對大體積混凝土的性能影響

doi: 10.13374/j.issn2095-9389.2021.07.01.002
基金項目: 國家重點研發計劃資助項目(2016YFC0600803);國家自然科學基金資助項目(51834001);中央高校基本科研業務費資助項目(FRF-BD-20-01B)
詳細信息
    通訊作者:

    E-mail: juanhong1966@hotmail.com

  • 中圖分類號: TU528

Effects of a simulated freezing construction environment on the mass concrete performance

More Information
  • 摘要: 模擬大體積混凝土在凍結法施工環境的狀態,將混凝土澆筑7 h后施加?5/60 ℃和?5/70 ℃溫差,測試施加模擬環境后混凝土的超聲波參數、抗壓強度、劈裂抗拉強度、氯離子擴散系數和沖擊傾向性,分析混凝土的掃描電鏡微觀形貌。結果表明,凍結施工環境對于混凝土內部會造成一定的損傷,且平行于加溫方向的損傷要大于垂直方向,C50混凝土的損傷大于C70混凝土,溫度梯度會加劇混凝土內部的損傷。模擬凍結環境會對混凝土抗壓強度、劈裂抗拉強度、氯離子滲透性能和沖擊傾向性造成不利影響,溫差與性能降低率正相關,且這種影響對于低強度混凝土更加顯著。模擬凍結環境造成混凝土試塊的內部微觀結構不均勻,低溫端混凝土結構比較疏松,高溫端結構比較致密,導致部分混凝土性能的降低。

     

  • 圖  1  試驗儀器。(a)主控機箱;(b)循環管線和加溫模具

    Figure  1.  Experiment instrument: (a) main control cabinet; (b) circulation pipeline and heating mold

    圖  2  超聲檢測方向示意圖

    Figure  2.  Schematic diagram of the ultrasonic testing direction

    圖  3  混凝土的抗壓強度和劈裂抗拉強度。(a)抗壓強度;(b)劈裂抗拉強度

    Figure  3.  Compressive strength and splitting tensile strength of concrete: (a) compressive strength; (b) splitting tensile strength

    圖  4  混凝土的氯離子擴散系數。(a)C50;(b)C70

    Figure  4.  Chloride diffusion coefficient of concrete: (a) C50; (b) C70

    圖  5  C50混凝土的掃描電鏡圖片。(a)冷端;(b) 熱端;(c)中溫;(d)標準養護

    Figure  5.  SEM images of C50 concrete: (a) cold side; (b) hot side; (c) medium temperature; (d) standard curing

    圖  6  C70混凝土的掃描電鏡圖片。(a)冷端;(b)熱端;(c)中溫;(d)標準養護

    Figure  6.  SEM image of C70 concrete: (a) cold side; (b) hot side; (c) medium temperature; (d) standard curing

    表  1  P.O 42.5水泥性能指標

    Table  1.   Main properties of cement

    Water mass requirement for normal
    consistency/%
    Initial setting
    time/min
    Final setting
    time/min
    Specific surface
    area/(m2·kg?1)
    SoundnessFlexural strength/MPa Compressive strength/MPa
    3 d28 d 3 d28 d
    29.2162226392Qualified4.99.9 27.550.0
    下載: 導出CSV

    表  2  不同強度等級的混凝土配合比

    Table  2.   Mix proportions of concrete with different strengths kg·m?3

    Strength gradeCementFly ashSlag powderSilica fumeSandStoneWaterPC*
    C503208085067310771555.82
    C703371001082555511261409.69
    Note:* is polycarboxylate superplasticizer for concrete.
    下載: 導出CSV

    表  3  混凝土在不同條件下的超聲檢測結果

    Table  3.   Ultrasonic testing results of concrete under different conditions

    Strength gradeSimulation condition/℃DirectionAmplitude/dbVelocity/
    (km·s?1)
    C50?5/60Vertical101.85.68
    ?5/60Parallel99.85.42
    Standard curing103.65.85
    ?5/70Vertical102.15.66
    ?5/70Parallel100.05.33
    Standard curing104.25.94
    C70?5/60Vertical103.16.03
    ?5/60Parallel101.65.89
    Standard curing104.86.14
    ?5/70Vertical103.36.08
    ?5/70Parallel100.25.85
    Standard curing105.36.21
    下載: 導出CSV

    表  4  混凝土在不同溫差模擬條件下的超聲檢測分析結果

    Table  4.   Analysis results of ultrasonic testing of concrete under different simulation conditions

    Strength gradeTemperature difference/℃Relative variation ratio/%
    Vertical velocityParallel velocityVertical amplitudeParallel amplitude
    C50?5/602.97.41.73.7
    C50?5/704.710.32.04.2
    C70?5/601.84.11.63.1
    C70?5/702.15.81.94.8
    下載: 導出CSV

    表  5  混凝土的沖擊傾向性指標

    Table  5.   Bursting liability indexes of concrete

    GroupBrittlenessDynamic failure time,
    TD/ ms
    Impact energy
    index, KE
    C50 Standard19.64801.78
    C50 ?5/60 ℃20.24102.06
    C50 ?5/70 ℃21.23802.32
    C70 Standard21.91705.81
    C70 ?5/60 ℃22.81406.32
    C70 ?5/70 ℃23.51206.55
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417

    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
    [2] Liu L Y, Ji H G, Wang T, et al. Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress. Chin J Eng, 2020, 42(6): 715

    劉力源, 紀洪廣, 王濤, 等. 高滲透壓和不對稱圍壓作用下深豎井圍巖損傷破裂機理. 工程科學學報, 2020, 42(6):715
    [3] Dong J H, Wu X L, Shi L J, et al. Effect of shallow tunnel construction by horizontal freezing on adjacent orthogonal subgrades. Chin J Rock Mech Eng, 2020, 39(11): 2365

    董建華, 吳曉磊, 師利君, 等. 水平凍結施工淺埋隧道對鄰近正交路基的作用分析. 巖石力學與工程學報, 2020, 39(11):2365
    [4] Zhang J W, Liu S J, Zhang S. Ultrasonic time-frequency characteristics of water-rich fine sand during unidirectional freezing process. Chin J Rock Mech Eng, 2020, 39(5): 1061

    張基偉, 劉書杰, 張松. 富水細砂單向凍結超聲波時頻特性研究. 巖石力學與工程學報, 2020, 39(5):1061
    [5] Gao X J, Li M Y, Zhang J W, et al. Field research on artificial freezing of subway cross passages in water-rich silty clay layers. Chin J Rock Mech Eng, 2021, 40(6): 1267

    郜新軍, 李銘遠, 張景偉, 等. 富水粉質黏土中地鐵聯絡通道凍結法試驗研究. 巖石力學與工程學報, 2021, 40(6):1267
    [6] Ma H Y, Zhu C Q, Zhao P T, et al. Freezing method for rock cross-cut coal uncovering: Aging characteristic of effective freezing distance on injecting liquid nitrogen into coal seam. Adv Civ Eng, 2021: 8870768
    [7] Zhang S, Yue Z R, Sun T C, et al. Evolution of ground freezing temperature field under sudden seepage with stable flow rate and discriminate method of seepage. J China Coal Soc, 2020, 45(12): 4017

    張松, 岳祖潤, 孫鐵成, 等. 突發定滲流作用下凍土溫度場演化規律及判別方法. 煤炭學報, 2020, 45(12):4017
    [8] Inada Y, Yokota K. Some studies of low temperature rock strength. Int J Rock Mech Min Sci Geomech Abstr, 1984, 21(3): 145 doi: 10.1016/0148-9062(84)91532-8
    [9] Shan R L, Liu W J, Chai G J, et al. Experimental study on the expansion law of local horizontal frozen body under seepage. J China Coal Soc, 2019, 44(Suppl 2): 526

    單仁亮, 劉偉俊, 柴高竣, 等. 滲流作用下局部水平凍結體擴展規律試驗研究. 煤炭學報, 2019, 44(增刊2): 526
    [10] Song Y J, Zhang L T, Ren J X, et al. Creep property and model of red sandstone under low temperature environment. J China Coal Soc, 2020, 45(8): 2795

    宋勇軍, 張磊濤, 任建喜, 等. 低溫環境下紅砂巖蠕變特性及其模型. 煤炭學報, 2020, 45(8):2795
    [11] Yao Z S, Zhao L X, Cheng H, et al. Optimization design and measurement analysis on inter lining of high strength reinforced concrete frozen shaft lining with deep topsoil. J China Coal Soc, 2019, 44(7): 2125

    姚直書, 趙麗霞, 程樺, 等. 深厚表土層凍結井筒高強鋼筋混凝土內壁設計優化與實測分析. 煤炭學報, 2019, 44(7):2125
    [12] Jiao H Z, Sun G D, Chen X M, et al. Development of temperature field of multi circle freezing wall in deep alluvium. J China Coal Soc, 2018, 43(Suppl 2): 443

    焦華喆, 孫冠東, 陳新明, 等. 深厚沖積層多圈孔凍結壁溫度場發展研究. 煤炭學報, 2018, 43(增刊2): 443
    [13] Guan H D, Zhou X M, Xu Y, et al. Calculation of the early thermal stress in freezing vertical shaft lining. Met Mine, 2018(5): 44

    管華棟, 周曉敏, 徐衍, 等. 凍結立井井壁早期溫度應力計算研究. 金屬礦山, 2018(5):44
    [14] Zhou Y Q, Liu W W. Application of granulated copper slag in massive concrete under saline soil environment. Constr Build Mater, 2021, 266: 121165 doi: 10.1016/j.conbuildmat.2020.121165
    [15] Azenha M, Kanavaris F, Schlicke D, et al. Recommendations of RILEM TC 287-CCS: Thermo-chemo-mechanical modelling of massive concrete structures towards cracking risk assessment. Mater Struct, 2021, 54(4): 1
    [16] Feng C Q, Zhao C, Yu X M, et al. A mathematical model of the expansion evolution of magnesium oxide in mass concrete based on hydration characteristics. Materials, 2021, 14(12): 3162 doi: 10.3390/ma14123162
    [17] Bakour A, Ftima M B. Experimental investigations on the asymptotic fracture energy for large mass concrete specimens using wedge splitting test. Constr Build Mater, 2021, 279: 122405 doi: 10.1016/j.conbuildmat.2021.122405
    [18] Zhou Y C, Liu J H, Huang S, et al. Performance change of shaft lining concrete under simulated coastal ultra-deep mine environments. Constr Build Mater, 2020, 230: 116909 doi: 10.1016/j.conbuildmat.2019.116909
    [19] Liu J H, Zhao L, Ji H G. Influence of initial damage on degradation and deterioration of concrete under sulfate attack. Chin J Eng, 2017, 39(8): 1278

    劉娟紅, 趙力, 紀洪廣. 初始損傷對混凝土硫酸鹽腐蝕劣化性能的影響. 工程科學學報, 2017, 39(8):1278
    [20] Yang L, Yao Z S, Xue W P, et al. Preparation, performance test and microanalysis of hybrid fibers and microexpansive high-performance shaft lining concrete. Constr Build Mater, 2019, 223: 431 doi: 10.1016/j.conbuildmat.2019.06.230
    [21] Liu J H, Zhao L, Song S M, et al. Ultrasonic velocity and acoustic emission properties of concrete eroded by sulfate and its damage mechanism. Chin J Eng, 2016, 38(8): 1075

    劉娟紅, 趙力, 宋少民, 等. 混凝土硫酸鹽腐蝕損傷的聲波與聲發射變化特征及機理. 工程科學學報, 2016, 38(8):1075
    [22] Liu J H, Wang Z Q, Ji H G. Performance of shaft lining concrete under the coupling effect of early-age frozen soil pressure and negative temperature. J Univ Sci Technol Beijing, 2014, 36(8): 1000

    劉娟紅, 王祖琦, 紀洪廣. 早齡期凍結土壓力與負溫耦合作用的井壁混凝土性能. 北京科技大學學報, 2014, 36(8):1000
    [23] Zhou Y C, Liu J H, Yang H T, et al. Failure patterns and energy analysis of shaft lining concrete in simulated deep underground environments. J Wuhan Univ Technol Mater Sci Ed, 2020, 35(2): 418 doi: 10.1007/s11595-020-2273-x
    [24] Liu J H, Zhou Y C, Yang H T, et al. Energy and damage characteristics of shaft lining concrete subjected to impact. J China Coal Soc, 2019, 44(10): 2983

    劉娟紅, 周昱程, 楊海濤, 等. 沖擊荷載作用下的井壁混凝土能量與損傷特性. 煤炭學報, 2019, 44(10):2983
    [25] Liu J H, Zhou Y C, Ji H G. Energy evolution mechanism of shaft wall concrete under uniaxial loading and unloading compression. J China Coal Soc, 2018, 43(12): 3364

    劉娟紅, 周昱程, 紀洪廣. 單軸加卸載作用下井壁混凝土能量演化機理. 煤炭學報, 2018, 43(12):3364
    [26] Zhou Y C, Liu J H, Ji H G, et al. Study on bursting liability of fiber reinforced shaft lining concrete based on temperature and compound salt. Mater Rep, 2019, 33(16): 2671 doi: 10.11896/cldb.18070169

    周昱程, 劉娟紅, 紀洪廣, 等. 溫度?復合鹽耦合條件下纖維混凝土井壁沖擊傾向性試驗研究. 材料導報, 2019, 33(16):2671 doi: 10.11896/cldb.18070169
    [27] Liu J H, Wu R D, Zhou Y C. Experiment of bursting liability of deep underground concrete under complex stress conditions. J China Coal Soc, 2018, 43(1): 79

    劉娟紅, 吳瑞東, 周昱程. 基于深地復雜應力條件下混凝土沖擊傾向性試驗. 煤炭學報, 2018, 43(1):79
  • 加載中
圖(6) / 表(5)
計量
  • 文章訪問數:  432
  • HTML全文瀏覽量:  215
  • PDF下載量:  29
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-07-01
  • 網絡出版日期:  2021-08-25
  • 刊出日期:  2022-05-25

目錄

    /

    返回文章
    返回