<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

缺陷控制對膽甾相液晶材料雙穩態性能的影響及其應用

于美娜 鄒呈 高延子 楊槐

于美娜, 鄒呈, 高延子, 楊槐. 缺陷控制對膽甾相液晶材料雙穩態性能的影響及其應用[J]. 工程科學學報, 2022, 44(4): 712-721. doi: 10.13374/j.issn2095-9389.2021.06.30.004
引用本文: 于美娜, 鄒呈, 高延子, 楊槐. 缺陷控制對膽甾相液晶材料雙穩態性能的影響及其應用[J]. 工程科學學報, 2022, 44(4): 712-721. doi: 10.13374/j.issn2095-9389.2021.06.30.004
YU Mei-na, ZOU Cheng, GAO Yan-zi, YANG Huai. Effects of controllable defects on the bistable properties of cholesteric liquid crystal materials and the potential application[J]. Chinese Journal of Engineering, 2022, 44(4): 712-721. doi: 10.13374/j.issn2095-9389.2021.06.30.004
Citation: YU Mei-na, ZOU Cheng, GAO Yan-zi, YANG Huai. Effects of controllable defects on the bistable properties of cholesteric liquid crystal materials and the potential application[J]. Chinese Journal of Engineering, 2022, 44(4): 712-721. doi: 10.13374/j.issn2095-9389.2021.06.30.004

缺陷控制對膽甾相液晶材料雙穩態性能的影響及其應用

doi: 10.13374/j.issn2095-9389.2021.06.30.004
基金項目: 國家自然科學基金資助項目(52103071,51720105002);中央高校基本科研業務費資助項目(FRF-IDRY-20-037)
詳細信息
    通訊作者:

    E-mail: yanghuai@mater.ustb.edu.cn

  • 中圖分類號: TB381;TB332

Effects of controllable defects on the bistable properties of cholesteric liquid crystal materials and the potential application

More Information
  • 摘要: 通過彎曲分子的摻雜實現了膽甾相液晶平面態油絲缺陷的調控和焦錐形貌的穩定,研究了各因素對雙穩態穩定性的影響,并展示了雙穩態的潛在應用。偏光顯微鏡觀察和透過率?電壓曲線測試結果表明,彎曲分子的引入可以調控甚至消除平面態的油絲缺陷,實現透過率增加,同時調節焦錐態的形貌,使扇形疇更細小破碎,有利于增強焦錐態的散射和穩定性,實現雙穩態效果。這是因為彎曲分子具有很小的彎曲彈性常數,進而對膽甾相液晶的彎曲彈性常數和扭曲彈性常數相對大小進行調節。平面取向層的錨定越強,對雙穩態(主要是焦錐態)的穩定越不利,但錨定作用太弱,不利于平面態的完美排列。可以通過取向作用強弱調節、盒厚調整來達到較優的效果。少量聚合物的引入有利于實現雙穩態的穩定。最后,基于缺陷調制后的雙穩態特性制備了無色和彩色的調光膜,展示了雙穩態的潛在應用。

     

  • 圖  1  分子結構示意圖

    Figure  1.  Molecular structure of materials

    圖  2  樣品的透過率隨時間變化曲線

    Figure  2.  Variation of transmittance with time

    圖  3  (a)具有較大伯格斯矢量(b)的位錯分裂為兩個向錯的示意圖[29];(b)在平行且等間距的體系中,具有半圓末端的油絲缺陷層結構示意圖[29];(c)圓環形焦錐疇[29]

    Figure  3.  (a) Splitting of the core of a large Burgers vector (b) dislocation into two disclinations[29]; (b) an oily streak with a semicircular end in a system of parallel and equidistant layers[29]; (c) toroidal focal conic domain with a circular base smoothly embedded in the set of horizontal flat layers[29]

    圖  4  膽甾相液晶解螺旋和螺旋回復過程中的分子排列示意圖[30]。(a)平面態;(b)垂直取向態;(c)錐狀螺旋態;(d)過渡平面態;(e)從過渡平面態到平面態的轉變

    Figure  4.  Schematic showing the unwinding and restoring of the helical structure in cholesteric liquid crystals[30]: (a) planar state; (b) homeotropic state; (c) conic helical state; (d) transient planar state; (e) transition from the transient planar state to the intrinsic planar state

    圖  5  不同CB7CB單體含量的膽甾相液晶平面態(上)和焦錐態(下)的偏光顯微鏡照片。(a)A1 (0%);(b)A2(10%);(c)A3(20%);(d)A4(28.5%)

    Figure  5.  Planar (upper) and focal conic (lower) texture of samples with different concentrations of CB7CB: (a) A1 (0%); (b) A2 (10%); (c) A3 (20%); (d) A4 (28.5%)

    圖  6  (a)CB7CB含量對透過率性能曲線的影響;(b)樣品A1和(c)樣品A4的平面態?焦錐態轉變電光性能曲線

    Figure  6.  (a) Transmittance curve of samples containing different concentrations of CB7CB; transmittance as a function of voltage in (b) sample A1 and (c) sample A4

    圖  7  焦錐態隨時間的變化。(a)偏光織構;(b)透過率

    Figure  7.  Time evolution of the focal conic state: (a) POM texture; (b) transmittance

    圖  8  PI取向液質量分數對透過率的影響

    Figure  8.  Transmittance curve as a function of PI mass fraction

    圖  9  液晶盒厚度的影響

    Figure  9.  Transmittance curve as a function of cell thickness

    圖  10  聚合物穩定樣品的透過率

    Figure  10.  Transmittance of polymer-stabilized samples

    圖  11  無色及彩色樣品的雙穩態效果照片。(a)無色;(b)中心反射波長550 nm,彩色;(c)中心反射波長650 nm,彩色

    Figure  11.  Photos of colorless and colored bistable samples: (a) colorless sample; (b) colored sample with reflective wavelength centered at 550 nm; (c) colored sample with reflective wavelength centered at 650 nm

    表  1  樣品組分及質量分數

    Table  1.   Components and mass fraction of samples %

    Sample No.BL038CB7CBCB15
    A184016
    A2741016
    A3642016
    A455.528.516
    下載: 導出CSV

    表  2  聚合物穩定樣品的透過率測試數據

    Table  2.   Transmittance result of polymer-stabilized samples

    Polymer mass fraction/%Curing stateTransmittance before polymerization Transmittance after polymerization
    TP/%TFC/%CR TP/%TFC/%CR
    0.5P87.21.2072.7 89.31.0684.2
    Fc88.31.3565.488.91.1378.7
    FcV85.51.2767.388.31.1974.2
    1.0P85.51.5654.8 87.11.1476.4
    Fc87.01.8148.1871.1178.4
    FcV84.21.6152.3851.3861.6
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Abergel T, Delmastro C. Tracking Building 2020 [R/OL]. International Energy Agency (2020-06) [2021-06-30].https://www.iea.org/reports/tracking-buildings-2020
    [2] Rezaei S D, Shannigrahi S, Ramakrishna S. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Sol Energy Mater Sol Cells, 2017, 159: 26 doi: 10.1016/j.solmat.2016.08.026
    [3] Hemaida A, Ghosh A, Sundaram S, et al. Evaluation of thermal performance for a smart switchable adaptive polymer dispersed liquid crystal (PDLC) glazing. Sol Energy, 2020, 195: 185 doi: 10.1016/j.solener.2019.11.024
    [4] Alghamdi H, Almawgani A H M. Smart and efficient energy saving system using PDLC glass // 2019 Smart City Symposium Prague (SCSP). Prague, 2019: 1
    [5] Guo S M, Liang X, Zhang H M, et al. An electrically light-transmittance-controllable film with a low-driving voltage from a coexistent system of polymer-dispersed and polymer-stabilised cholesteric liquid crystals. Liq Cryst, 2018, 45(12): 1854 doi: 10.1080/02678292.2018.1501820
    [6] Liang X, Guo C S, Chen M, et al. A roll-to-roll process for multi-responsive soft-matter composite films containing CsxWO3 nanorods for energy-efficient smart window applications. Nanoscale Horiz, 2017, 2(6): 319 doi: 10.1039/C7NH00105C
    [7] Liang X, Chen M, Chen G, et al. Effects of polymer micro-structures on the thermo-optical properties of a flexible soft-mater film based on liquid crystals/polymer composite. Polymer, 2018, 146: 161 doi: 10.1016/j.polymer.2018.05.044
    [8] Zhang H M, Cao H, Chen M, et al. Effects of the fluorinated liquid crystal molecules on the electro-optical properties of polymer dispersed liquid crystal films. Liq Cryst, 2017, 44(14-15): 2301 doi: 10.1080/02678292.2017.1376715
    [9] Zhang H M, Zhong T J, Chen M, et al. The physical properties of alkene-terminated liquid crystal molecules/E8 mixture and the electro-optical properties as they doped in polymer-dispersed liquid crystal systems. Liq Cryst, 2018, 45(8): 1118 doi: 10.1080/02678292.2017.1411984
    [10] Zhang H M, Chen M, Jiang T M, et al. Cyano terminated tolane compounds for polymer dispersed liquid crystal application: Relationship between cyano terminated tolane based molecular structures and electro-optical properties. Liq Cryst, 2018, 45(12): 1771 doi: 10.1080/02678292.2018.1485975
    [11] Manda R, Pagidi S, Kim M, et al. Effect of monomer concentration and functionality on electro-optical properties of polymer-stabilised optically isotropic liquid crystals. Liq Cryst, 2018, 45(5): 736 doi: 10.1080/02678292.2017.1380239
    [12] Mouquinho A, Figueirinhas J, Sotomayor J. Digital optical memory devices based on polymer-dispersed liquid crystals films: Appropriate polymer matrix morphology. Liq Cryst, 2020, 47(5): 636 doi: 10.1080/02678292.2019.1667444
    [13] Saeed M H, Zhang S F, Zhou L, et al. Effects of rigid structures containing (meth)acrylate monomers and crosslinking agents with different chain length on the morphology and electro-optical properties of polymer-dispersed liquid crystal films. J Mod Opt, 2020, 67(8): 682 doi: 10.1080/09500340.2020.1760386
    [14] Lin H N, Zhang S F, Saeed M H, et al. Effects of the methacrylate monomers with different end groups on the morphologies, electro-optical and mechanical properties of polymer dispersed liquid crystals composite films. Liq Cryst, 2021, 48(5): 722 doi: 10.1080/02678292.2020.1815091
    [15] Kizhakidathazhath R, Nishikawa H, Okumura Y, et al. High-performance polymer dispersed liquid crystal enabled by uniquely designed acrylate monomer. Polymers, 2020, 12(8): 1625 doi: 10.3390/polym12081625
    [16] Gao H Q, Zhang S F, Saeed M H, et al. Study on the morphologies and electro-optical properties of cyano-phenyl-ester liquid crystals/polymer composite films prepared by a stepwise polymerisation. Liq Cryst, 2020, 47(10): 1497 doi: 10.1080/02678292.2020.1737976
    [17] Yang J, Zhang Y, Zhang C H, et al. Regulating content of thiol/LC and UV intensity to optimize morphology and electro-optical performance of polymer-dispersed liquid crystal. Liq Cryst, 2018, 45(12): 1726 doi: 10.1080/02678292.2018.1455226
    [18] Zhang L, Shi Z Q, He T Y, et al. Effects of the chain length of crosslinking agent and dye-doped amount on the electro-optical properties of polymer-dispersed liquid crystal films prepared by nucleophile-initiated thiol-ene click reaction. Liq Cryst, 2020, 47(1): 42 doi: 10.1080/02678292.2019.1626924
    [19] Zhang L, Liu Y W, Shi Z Q, et al. Effects of alkyl chain length of monomer and dye-doped type on the electro-optical properties of polymer-dispersed liquid crystal films prepared by nucleophile-initiated thiol-ene click reaction. Liq Cryst, 2020, 47(5): 658 doi: 10.1080/02678292.2019.1673909
    [20] Zhong T J, Mandle R J, Goodby J W, et al. Thiol-ene reaction based polymer dispersed liquid crystal composite films with low driving voltage and high contrast ratio. Liq Cryst, 2020, 47(14-15): 2171 doi: 10.1080/02678292.2018.1563919
    [21] Khlifi S, Bigeon J, Amela-Cortes M, et al. Switchable two-dimensional waveguiding abilities of luminescent hybrid nanocomposites for active solar concentrators. ACS Appl Mater Inter, 2020, 12(12): 14400 doi: 10.1021/acsami.9b23055
    [22] Chu Y T, Yin Z P, Sha J Q, et al. Regulation and control of polymer network deformation in reverse-mode polymer-stabilised cholesteric texture. Liq Cryst, 2017, 44(4): 688 doi: 10.1080/02678292.2016.1230895
    [23] Fuh A Y G, Shin Z B, Yang C H, et al. Electrically controllable smart window with greyscale based on polymer-stabilised cholesteric texture films. Liq Cryst, 2016, 43(12): 1784 doi: 10.1080/02678292.2016.1209700
    [24] Lu H B, Chu Y T, Jing S C, et al. Characterisation and effect of polymer network deformation in reverse-mode polymer-stabilised cholesteric texture. Liq Cryst, 2017, 44(3): 437 doi: 10.1080/02678292.2016.1217359
    [25] Baliyan V K, Jeong K U, Kang S W. Dichroic-dye-doped short pitch cholesteric liquid crystals for the application of electrically switchable smart windows. Dyes Pigments, 2019, 166: 403 doi: 10.1016/j.dyepig.2019.03.045
    [26] Li C C, Tseng H Y, Chen C W, et al. Versatile energy-saving smart glass based on tristable cholesteric liquid crystals. ACS Appl Energy Mater, 2020, 3(8): 7601 doi: 10.1021/acsaem.0c01033
    [27] Rumi M, Bunning T J, White T J. Polymer stabilization of cholesteric liquid crystals in the oblique helicoidal state. Soft Matter, 2018, 14(44): 8883 doi: 10.1039/C8SM01278D
    [28] Oswald P, Colombier J. On the measurement of the bend elastic constant in nematic liquid crystals close to the nematic-to-SmA and the nematic-to-NTB phase transitions. Liq Cryst, 2021: 1
    [29] Kitzerow H S, Bahr C. Chirality in Liquid Crystals. New York: Springer-Verlag, 2001
    [30] Yu M N, Zhou X C, Jiang J H, et al. Matched elastic constants for a perfect helical planar state and a fast switching time in chiral nematic liquid crystals. Soft Matter, 2016, 12(19): 4483 doi: 10.1039/C6SM00546B
    [31] Wang L, He W L, Wang Q, et al. Polymer-stabilized nanoparticle-enriched blue phase liquid crystals. J Mater Chem C, 2013, 1(40): 6526 doi: 10.1039/c3tc31253d
    [32] Li J T, Bisoyi H K, Tian J J, et al. Optically rewritable transparent liquid crystal displays enabled by light-driven chiral fluorescent molecular switches. Adv Mater, 2019, 31(10): 1807751 doi: 10.1002/adma.201807751
    [33] Wang J Q, Meng C L, Wang C T, et al. A fully self-powered, ultra-stable cholesteric smart window triggered by instantaneous mechanical stimuli. Nano Energy, 2021, 85: 105976 doi: 10.1016/j.nanoen.2021.105976
  • 加載中
圖(11) / 表(2)
計量
  • 文章訪問數:  750
  • HTML全文瀏覽量:  422
  • PDF下載量:  75
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-06-30
  • 網絡出版日期:  2021-11-08
  • 刊出日期:  2022-04-02

目錄

    /

    返回文章
    返回