<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

榆神府礦區采煤地表裂縫發育規律及特征

謝曉深 侯恩科 馮棟 從通 侯鵬飛 陳秋計 王建文 李民峰 謝永利

謝曉深, 侯恩科, 馮棟, 從通, 侯鵬飛, 陳秋計, 王建文, 李民峰, 謝永利. 榆神府礦區采煤地表裂縫發育規律及特征[J]. 工程科學學報, 2023, 45(1): 44-53. doi: 10.13374/j.issn2095-9389.2021.06.29.001
引用本文: 謝曉深, 侯恩科, 馮棟, 從通, 侯鵬飛, 陳秋計, 王建文, 李民峰, 謝永利. 榆神府礦區采煤地表裂縫發育規律及特征[J]. 工程科學學報, 2023, 45(1): 44-53. doi: 10.13374/j.issn2095-9389.2021.06.29.001
XIE Xiao-shen, HOU En-ke, FENG Dong, CONG Tong, HOU Peng-fei, CHEN Qiu-ji, WANG Jian-wen, LI Min-feng, XIE Yong-li. Development law and characteristics of surface cracks caused by coal mining in Yushenfu mining area[J]. Chinese Journal of Engineering, 2023, 45(1): 44-53. doi: 10.13374/j.issn2095-9389.2021.06.29.001
Citation: XIE Xiao-shen, HOU En-ke, FENG Dong, CONG Tong, HOU Peng-fei, CHEN Qiu-ji, WANG Jian-wen, LI Min-feng, XIE Yong-li. Development law and characteristics of surface cracks caused by coal mining in Yushenfu mining area[J]. Chinese Journal of Engineering, 2023, 45(1): 44-53. doi: 10.13374/j.issn2095-9389.2021.06.29.001

榆神府礦區采煤地表裂縫發育規律及特征

doi: 10.13374/j.issn2095-9389.2021.06.29.001
基金項目: 國家自然科學基金資助項目(42177174);陜西煤業化工集團科研計劃資助項目(2018MHKJ-B-J-24);中央引導地方科技創新專項資助項目(2020ZY-JC-03);聯合基金項目-企業-陜煤聯合基金資助項目(2021JLM-09)
詳細信息
    通訊作者:

    E-mail: houek@xust.edu.cn

  • 中圖分類號: TD745

Development law and characteristics of surface cracks caused by coal mining in Yushenfu mining area

More Information
  • 摘要: 榆神府礦區是陜北一個重要的原煤產地,煤炭開發利用規模大、強度高,但區內生態環境脆弱,采煤誘發的礦山地質環境問題尤為顯著。為全面掌握榆神府礦區采煤地表裂縫“靜”、“動”態發育規律、揭示其形成機理,以榆神府礦區的安山煤礦、檸條塔煤礦和小保當一號井的典型工作面為對象開展研究。研究結果表明:① 地表裂縫分為臺階型、擠壓隆起型、滑動型和拉張型4種類型以及“塌陷槽”、“平行并列”2種組合方式;② 榆神府礦區地表裂縫平面展布規律具有相對統一性,而地表裂縫表現特征具有差異性,且與采深采厚比呈負相關關系;③ 極淺埋煤層開采、淺埋煤層開采以及中深埋煤層開采地表裂縫分別具有滯后回采位置1.0 m、超前回采位置8.5 m和滯后回采位置30.14 m的動態展布規律,且地表裂縫滯后距與采深采厚比之間存在多項式的函數關系;④ 邊界裂縫和面內正向坡裂縫具有“只開不合”的活動特征,面內逆向坡裂縫具有“先開后合”的活動特征,面內平坦區裂縫則具有“先開后合再開”和“先開后合”兩種裂縫活動特征,平均活動時間3.7~7.0 d;裂縫“先開后合再開”的活動受覆巖運移控制,“只開不合”和“先開后合”的裂縫活動受地表移動變形控制,而斜坡裂縫活動機理則與坡體滑移密切相關。研究成果可為榆神府礦區地表裂縫治理和生態修復提供指導。

     

  • 圖  1  研究區位置及地貌

    Figure  1.  Location and geomorphology of the study area

    圖  2  地表裂縫類型及組合形式. (a)臺階狀裂縫; (b)擠壓隆起; (c)滑動裂縫I型; (d)滑動裂縫II型; (e) 拉張裂縫; (f) “集群”發育; (g)塌陷槽; (h) 平行并列組合

    Figure  2.  Type and combination form of surface cracks: (a) step crack; (b) extrusion swell; (c) sliding crack I; (d) sliding crack II; (e) tensile crack; (f) cluster development;(g) collapse trough; (h) parallel cracks

    圖  3  地表裂縫平面展布示意圖

    Figure  3.  Distribution map of surface cracks

    圖  4  地表裂縫特征. (a)裂縫寬度占比; (b)裂縫落差高度占比

    Figure  4.  Characteristics of surface cracks: (a) proportion of cracks with different widths; (b) proportion of cracks with different heights

    圖  5  地表裂縫動態展布示意圖

    Figure  5.  Dynamic expansion map of surface cracks

    圖  6  地表裂縫滯后距與采深采厚比關系

    Figure  6.  Relationship between lag distance of surface fractures and mining depth-thickness ratio

    圖  7  地表裂縫活動曲線. (a)面內反向坡裂縫; (b)面內正向坡裂縫; (c)面內平坦區裂縫; (d)順槽邊界裂縫

    Figure  7.  Activity curve of surface cracks: (a) slope cracks opposite to the direction of mining; (b) slope cracks in the same direction as mining; (c) cracks in the flat area of the working face; (d) marginal cracks

    圖  8  地表裂縫形成機理示意圖

    Figure  8.  Model diagram of the formation mechanism of surface cracks

    圖  9  125203工作面面內地表裂縫動態發育模型

    Figure  9.  Dynamic evolution model of surface cracks in the 125203 working face

    圖  10  N1212工作面和112201工作面地表裂縫動態發育模型

    Figure  10.  Dynamic evolution model of surface cracks in the N1212 working face and the 110201 working face

    圖  11  面內斜坡裂縫動態發育模型

    Figure  11.  Dynamic evolution model of surface cracks in a slope

    表  1  典型工作面開采參數表

    Table  1.   Parameters of typical working faces

    Working facesLength/mWidth/mMining thickness/mMining depth/mCoal seamMining speed/(m·d?1Mining methodGeomorphology
    12520331522702.020(trench bottom)5?211.5Long wall coal miningLoess gully
    S123049933246.51812?29.0Long wall coal miningAeolian beach
    N121219651704.81782?28.0Long wall coal miningLoess gully
    S1200239563444.11912?29.0Long wall coal miningAeolian beach
    11220145603505.83022?212.8Long wall coal miningAeolian beach
    下載: 導出CSV

    表  2  地表裂縫動態發育特征數據

    Table  2.   Data of dynamic development characteristics of surface cracks

    Working faceRatio of depth
    to thickness
    Dynamic distribution characteristics Activity characteristics of surface cracks, variation characteristics of crack width / activity time
    Lag distance/
    m
    Lag angle / (°)Surface cracks on the reverse slopeSurface cracks on the positive slopeSurface cracks on
    the flat area
    Marginal cracks
    125203101.0087.10increase—decrease—
    stable /3.0 d
    Increase until stable /
    4.0 d
    increase—decrease—
    increase—stable /3.7 d
    N121237?8.50?87.20increase—decrease—
    stable /5.0 d
    Increase until stable /
    7.0 d
    increase—decrease—
    stable /6.0 d
    Increase until stable /
    7.0 d
    1122015230.1484.10increase—decrease—
    stable /7.8 d
    Increase until stable /
    7.0 d
    Note: positive value represents lag and negative value represents lead.
    下載: 導出CSV

    表  3  工作面覆巖“兩帶”高度

    Table  3.   Height of “two zone”

    Working facesHeight of “Two zone”/mAverage mining depth/mAverage bedrock thickness /mRemaining geotechnical thickness /m
    12520354.020.0(trench bottom)19.0(trench bottom)?34.00
    N1212129.6178.085.048.4
    112201156.6302.00215.0145.4
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Bi Y L, Peng S P, Du S Z. Technological difficulties and future directions of ecological reconstruction in open pit coal mine of the arid and semi-arid areas of Western China. J China Coal Soc, 2021, 46(5): 1355 doi: 10.13225/j.cnki.jccs.st21.0707

    畢銀麗, 彭蘇萍, 杜善周. 西部干旱半干旱露天煤礦生態重構技術難點及發展方向. 煤炭學報, 2021, 46(5):1355 doi: 10.13225/j.cnki.jccs.st21.0707
    [2] Wang S M, Sun Q, Qiao J W, et al. Geological guarantee of coal green mining. J China Coal Soc, 2020, 45(1): 8 doi: 10.13225/j.cnki.jccs.YG19.1758

    王雙明, 孫強, 喬軍偉, 等. 論煤炭綠色開采的地質保障. 煤炭學報, 2020, 45(1):8 doi: 10.13225/j.cnki.jccs.YG19.1758
    [3] Miao X X, Qian M G. Research on green mining of coal resources in China: Current status and future prospects. J Min Saf Eng, 2009, 26(1): 1 doi: 10.3969/j.issn.1673-3363.2009.01.001

    繆協興, 錢鳴高. 中國煤炭資源綠色開采研究現狀與展望. 采礦與安全工程學報, 2009, 26(1):1 doi: 10.3969/j.issn.1673-3363.2009.01.001
    [4] Kang H P, Xu G, Wang B M, et al. Forty years development and prospects of underground coal mining and strata control technologies in China. J Min Strata Control Eng, 2019, 1(2): 7

    康紅普, 徐剛, 王彪謀, 等. 我國煤炭開采與巖層控制技術發展40a及展望. 采礦與巖層控制工程學報, 2019, 1(2):7
    [5] Wang S M, Duan Z H, Ma L, et al. Research status and future trends of geological assurance technology for coal green development in Western China. Coal Sci Technol, 2019, 47(2): 1 doi: 10.13199/j.cnki.cst.2019.02.001

    王雙明, 段中會, 馬麗, 等. 西部煤炭綠色開發地質保障技術研究現狀與發展趨勢. 煤炭科學技術, 2019, 47(2):1 doi: 10.13199/j.cnki.cst.2019.02.001
    [6] Li W P, Duan Z H, Hua J M, et al. Evaluation of present geological environment and prediction of its variation caused by mining in yushenfu mine area of north Shanxi. J Eng Geol, 2000, 8(3): 324 doi: 10.3969/j.issn.1004-9665.2000.03.013

    李文平, 段中會, 華解明, 等. 陜北榆神府礦區地質環境現狀及采煤效應影響預測. 工程地質學報, 2000, 8(3):324 doi: 10.3969/j.issn.1004-9665.2000.03.013
    [7] Hu Z Q, Wang X J, He A M. Distribution characteristic and development rules of ground fissures due to coal mining in windy and sandy region. J China Coal Soc, 2014, 39(1): 11

    胡振琪, 王新靜, 賀安民. 風積沙區采煤沉陷地裂縫分布特征與發生發育規律. 煤炭學報, 2014, 39(1):11
    [8] Xu Z H, Li Q S, Li X B, et al. Structural evolution of overburden and surface damage caused by high-intensity mining with shallow depth. J China Coal Soc, 2020, 45(8): 2728 doi: 10.13225/j.cnki.jccs.2020.0917

    徐祝賀, 李全生, 李曉斌, 等. 淺埋高強度開采覆巖結構演化及地表損傷研究. 煤炭學報, 2020, 45(8):2728 doi: 10.13225/j.cnki.jccs.2020.0917
    [9] Dai H Y, Luo J C, Guo J T, et al. In-site surveying and study on development laws of surface cracks by high-intensity mining in Shangwan Mine. Coal Sci Technol, 2020, 48(10): 124 doi: 10.13199/j.cnki.cst.2020.10.015

    戴華陽, 羅景程, 郭俊廷, 等. 上灣礦高強度開采地表裂縫發育規律實測研究. 煤炭科學技術, 2020, 48(10):124 doi: 10.13199/j.cnki.cst.2020.10.015
    [10] Hou E K, Shou Z G, Xu Y N, et al. Application of UAV remote sensing technology in monitoring of coal mining-induced subsidence. Coal Geol Explor, 2017, 45(6): 102 doi: 10.3969/j.issn.1001-1986.2017.06.017

    侯恩科, 首召貴, 徐友寧, 等. 無人機遙感技術在采煤地面塌陷監測中的應用. 煤田地質與勘探, 2017, 45(6):102 doi: 10.3969/j.issn.1001-1986.2017.06.017
    [11] Hou E K, Zhang J, Xie X S, et al. Contrast application of unmanned aerial vehicle remote sensing and satellite remote sensing technology relating to ground surface cracks recognition in coal mining area. Geol Bull China, 2019, 38(2-3): 443

    侯恩科, 張杰, 謝曉深, 等. 無人機遙感與衛星遙感在采煤地表裂縫識別中的對比. 地質通報, 2019, 38(2-3):443
    [12] Zhou D W, Wu K, Bai Z H, et al. Formation and development mechanism of ground crack caused by coal mining: Effects of overlying key strata. Bull Eng Geol Environ, 2019, 78(2): 1025 doi: 10.1007/s10064-017-1108-2
    [13] Wang Y G, Guo W B. Analysis of ground crack laws of mining subsidence. Chin J Geol Hazard Control, 2017, 28(1): 89 doi: 10.16031/j.cnki.issn.1003-8035.2017.01.14

    王云廣, 郭文兵. 采空塌陷區地表裂縫發育規律分析. 中國地質災害與防治學報, 2017, 28(1):89 doi: 10.16031/j.cnki.issn.1003-8035.2017.01.14
    [14] Chen C, Hu Z Q. Research advances in formation mechanism of ground crack due to coal mining subsidence in China. J China Coal Soc, 2018, 43(3): 810

    陳超, 胡振琪. 我國采動地裂縫形成機理研究進展. 煤炭學報, 2018, 43(3):810
    [15] Peng J, Li C, Xiang M X, et al. Influence of coal mining on phreatic aquifer and its environmental effects in Yulin-Shenmu-Fugu Area. Coal Sci Technol, 2018, 46(2): 156

    彭捷, 李成, 向茂西, 等. 榆神府區采動對潛水含水層的影響及其環境效應. 煤炭科學技術, 2018, 46(2):156
    [16] Wang S M, Shen Y J, Sun Q, et al. Scientific issues of coal detraction mining geological assurance and their technology expectations in ecologically fragile mining areas of Western China. J Min Strata Control Eng, 2020, 2(4): 5

    王雙明, 申艷軍, 孫強, 等. 西部生態脆弱區煤炭減損開采地質保障科學問題及技術展望. 采礦與巖層控制工程學報, 2020, 2(4):5
    [17] Fan L M, Ma X D, Li Y H, et al. Geological disasters and control technology in high intensity mining area of Western China. J China Coal Soc, 2017, 42(2): 276

    范立民, 馬雄德, 李永紅, 等. 西部高強度采煤區礦山地質災害現狀與防控技術. 煤炭學報, 2017, 42(2):276
    [18] Hou E K, Chen Y, Che X Y, et al. Study on overburden failure characteristics and fracture evolution law of shallow buried coal seam through trench mining. Coal Sci Technol, 2021, 49(10): 185

    侯恩科, 陳育, 車曉陽, 等. 淺埋煤層過溝開采覆巖破壞特征及裂隙演化規律研究. 煤炭科學技術, 2021, 49(10):185
    [19] Wang S M, Hou E K, Xie X S, et al. Study on influence of surface ecological environment caused by middle deep coal mining and the ways of restoration. Coal Sci Technol, 2021, 49(1): 19

    王雙明, 侯恩科, 謝曉深, 等. 中深部煤層開采對地表生態環境的影響及修復提升途徑研究. 煤炭科學技術, 2021, 49(1):19
    [20] Liu H, He C G, Deng K Z, et al. Analysis of forming mechanism of collapsing ground fissure caused by mining. J Min Saf Eng, 2013, 30(3): 380

    劉輝, 何春桂, 鄧喀中, 等. 開采引起地表塌陷型裂縫的形成機理分析. 采礦與安全工程學報, 2013, 30(3):380
    [21] Huang Q X, Du J W, Hou E K, et al. Research on overburden and ground surface cracks distribution and formation mechanism in shallow coal seams group mining. J Min Saf Eng, 2019, 36(1): 7

    黃慶享, 杜君武, 侯恩科, 等. 淺埋煤層群覆巖與地表裂隙發育規律和形成機理研究. 采礦與安全工程學報, 2019, 36(1):7
    [22] Guo W B, Bai E H, Zhao G B. Current status and progress on overburden and surface damage and prevention technology of high-intensity mining. J China Coal Soc, 2020, 45(2): 509

    郭文兵, 白二虎, 趙高博. 高強度開采覆巖地表破壞及防控技術現狀與進展. 煤炭學報, 2020, 45(2):509
    [23] Zhou J L, Huang Q X. Stability analysis of key stratum structures of large mining height longwall face in shallow coal seam. Chin J Rock Mech Eng, 2019, 38(7): 1396

    周金龍, 黃慶享. 淺埋大采高工作面頂板關鍵層結構穩定性分析. 巖石力學與工程學報, 2019, 38(7):1396
    [24] Li L, Wu K, Hu Z Q, et al. Analysis of developmental features and causes of the ground cracks induced by oversized working face mining in an aeolian sand area. Environ Earth Sci, 2017, 76(3): 1
    [25] Sun K, Li Y H, Liu H N, et al. “Opposite-slide”loess landslides and its formation mechanism in Binchang mining area. J China Coal Soc, 2017, 42(11): 2989

    孫魁, 李永紅, 劉海南, 等. 彬長礦區“對滑型”黃土滑坡及其形成機制. 煤炭學報, 2017, 42(11):2989
  • 加載中
圖(11) / 表(3)
計量
  • 文章訪問數:  589
  • HTML全文瀏覽量:  218
  • PDF下載量:  76
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-06-29
  • 網絡出版日期:  2021-09-09
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回