Development law and characteristics of surface cracks caused by coal mining in Yushenfu mining area
-
摘要: 榆神府礦區是陜北一個重要的原煤產地,煤炭開發利用規模大、強度高,但區內生態環境脆弱,采煤誘發的礦山地質環境問題尤為顯著。為全面掌握榆神府礦區采煤地表裂縫“靜”、“動”態發育規律、揭示其形成機理,以榆神府礦區的安山煤礦、檸條塔煤礦和小保當一號井的典型工作面為對象開展研究。研究結果表明:① 地表裂縫分為臺階型、擠壓隆起型、滑動型和拉張型4種類型以及“塌陷槽”、“平行并列”2種組合方式;② 榆神府礦區地表裂縫平面展布規律具有相對統一性,而地表裂縫表現特征具有差異性,且與采深采厚比呈負相關關系;③ 極淺埋煤層開采、淺埋煤層開采以及中深埋煤層開采地表裂縫分別具有滯后回采位置1.0 m、超前回采位置8.5 m和滯后回采位置30.14 m的動態展布規律,且地表裂縫滯后距與采深采厚比之間存在多項式的函數關系;④ 邊界裂縫和面內正向坡裂縫具有“只開不合”的活動特征,面內逆向坡裂縫具有“先開后合”的活動特征,面內平坦區裂縫則具有“先開后合再開”和“先開后合”兩種裂縫活動特征,平均活動時間3.7~7.0 d;裂縫“先開后合再開”的活動受覆巖運移控制,“只開不合”和“先開后合”的裂縫活動受地表移動變形控制,而斜坡裂縫活動機理則與坡體滑移密切相關。研究成果可為榆神府礦區地表裂縫治理和生態修復提供指導。Abstract: Yushenfu mining area, with large scale and high intensity, is an important raw coal-producing area in northern Shaanxi, but the fragile ecological environment makes the mine geological environment problems caused by coal mining particularly relevant. To grasp the development law of surface cracks and reveal the formation mechanism caused by coal mining in the Yushenfu mining area, the typical working faces of Anshan Coal Mine, Caragana Tower Coal Mine, and No. 1 Coal Mine of Xiaobaodang in the Yushenfu Mining area were chosen as the research object to conduct the study. The results show that the surface cracks can be divided into four types: step type, extrusion uplift type, sliding type, and tension type, as well as two combination modes of collapse, trough and parallel. In the Yushenfu mining area, the spatial distribution law of surface cracks is relatively unified. The performance characteristics of surface cracks are different and negatively correlated with the ratio of mining depth to mining thickness. The surface cracks induced by very shallow coal seam mining, shallow coal seam mining, and medium-deep coal seam mining have the dynamic law of lagging mining position 1.0 m, advanced mining position 8.5 m, and lagging mining position 30.14 m, respectively, and the relationship between the lag distance of surface cracks and the ratio of mining depth to mining thickness is a polynomial function. The characteristic of the width of boundary cracks and forward slope cracks in the working face was increased until stable. In contrast to the boundary cracks, the characteristic of the width of the reverse slope fractures increases and then decreases, and the width of the cracks in the flat area in the working face increases first, then declines, and then increases. The average activity time was 3.7–7.0 days. The crack with the activity of “opening first and then closing” is controlled by the dynamic evolution of overlying rock structure, and the fracture with the activity of “only opening and then closing” and “opening first and then closing” was controlled by surface dynamic evolution. However, the activation mechanism of slope fracture is closely related to slope slip. The findings of this study can provide theoretical guidance for surface crack control and ecological restoration in the Yushenfu mining area.
-
Key words:
- coal mining /
- surface cracks /
- development law /
- formation mechanism /
- Yushenfu mining area
-
圖 2 地表裂縫類型及組合形式. (a)臺階狀裂縫; (b)擠壓隆起; (c)滑動裂縫I型; (d)滑動裂縫II型; (e) 拉張裂縫; (f) “集群”發育; (g)塌陷槽; (h) 平行并列組合
Figure 2. Type and combination form of surface cracks: (a) step crack; (b) extrusion swell; (c) sliding crack I; (d) sliding crack II; (e) tensile crack; (f) cluster development;(g) collapse trough; (h) parallel cracks
表 1 典型工作面開采參數表
Table 1. Parameters of typical working faces
Working faces Length/m Width/m Mining thickness/m Mining depth/m Coal seam Mining speed/(m·d?1) Mining method Geomorphology 125203 3152 270 2.0 20(trench bottom) 5?2 11.5 Long wall coal mining Loess gully S1230 4993 324 6.5 181 2?2 9.0 Long wall coal mining Aeolian beach N1212 1965 170 4.8 178 2?2 8.0 Long wall coal mining Loess gully S12002 3956 344 4.1 191 2?2 9.0 Long wall coal mining Aeolian beach 112201 4560 350 5.8 302 2?2 12.8 Long wall coal mining Aeolian beach 表 2 地表裂縫動態發育特征數據
Table 2. Data of dynamic development characteristics of surface cracks
Working face Ratio of depth
to thicknessDynamic distribution characteristics Activity characteristics of surface cracks, variation characteristics of crack width / activity time Lag distance/
mLag angle / (°) Surface cracks on the reverse slope Surface cracks on the positive slope Surface cracks on
the flat areaMarginal cracks 125203 10 1.00 87.10 increase—decrease—
stable /3.0 dIncrease until stable /
4.0 dincrease—decrease—
increase—stable /3.7 dN1212 37 ?8.50 ?87.20 increase—decrease—
stable /5.0 dIncrease until stable /
7.0 dincrease—decrease—
stable /6.0 dIncrease until stable /
7.0 d112201 52 30.14 84.10 increase—decrease—
stable /7.8 dIncrease until stable /
7.0 dNote: positive value represents lag and negative value represents lead. 表 3 工作面覆巖“兩帶”高度
Table 3. Height of “two zone”
Working faces Height of “Two zone”/m Average mining depth/m Average bedrock thickness /m Remaining geotechnical thickness /m 125203 54.0 20.0(trench bottom) 19.0(trench bottom) ?34.00 N1212 129.6 178.0 85.0 48.4 112201 156.6 302.00 215.0 145.4 www.77susu.com -
參考文獻
[1] Bi Y L, Peng S P, Du S Z. Technological difficulties and future directions of ecological reconstruction in open pit coal mine of the arid and semi-arid areas of Western China. J China Coal Soc, 2021, 46(5): 1355 doi: 10.13225/j.cnki.jccs.st21.0707畢銀麗, 彭蘇萍, 杜善周. 西部干旱半干旱露天煤礦生態重構技術難點及發展方向. 煤炭學報, 2021, 46(5):1355 doi: 10.13225/j.cnki.jccs.st21.0707 [2] Wang S M, Sun Q, Qiao J W, et al. Geological guarantee of coal green mining. J China Coal Soc, 2020, 45(1): 8 doi: 10.13225/j.cnki.jccs.YG19.1758王雙明, 孫強, 喬軍偉, 等. 論煤炭綠色開采的地質保障. 煤炭學報, 2020, 45(1):8 doi: 10.13225/j.cnki.jccs.YG19.1758 [3] Miao X X, Qian M G. Research on green mining of coal resources in China: Current status and future prospects. J Min Saf Eng, 2009, 26(1): 1 doi: 10.3969/j.issn.1673-3363.2009.01.001繆協興, 錢鳴高. 中國煤炭資源綠色開采研究現狀與展望. 采礦與安全工程學報, 2009, 26(1):1 doi: 10.3969/j.issn.1673-3363.2009.01.001 [4] Kang H P, Xu G, Wang B M, et al. Forty years development and prospects of underground coal mining and strata control technologies in China. J Min Strata Control Eng, 2019, 1(2): 7康紅普, 徐剛, 王彪謀, 等. 我國煤炭開采與巖層控制技術發展40a及展望. 采礦與巖層控制工程學報, 2019, 1(2):7 [5] Wang S M, Duan Z H, Ma L, et al. Research status and future trends of geological assurance technology for coal green development in Western China. Coal Sci Technol, 2019, 47(2): 1 doi: 10.13199/j.cnki.cst.2019.02.001王雙明, 段中會, 馬麗, 等. 西部煤炭綠色開發地質保障技術研究現狀與發展趨勢. 煤炭科學技術, 2019, 47(2):1 doi: 10.13199/j.cnki.cst.2019.02.001 [6] Li W P, Duan Z H, Hua J M, et al. Evaluation of present geological environment and prediction of its variation caused by mining in yushenfu mine area of north Shanxi. J Eng Geol, 2000, 8(3): 324 doi: 10.3969/j.issn.1004-9665.2000.03.013李文平, 段中會, 華解明, 等. 陜北榆神府礦區地質環境現狀及采煤效應影響預測. 工程地質學報, 2000, 8(3):324 doi: 10.3969/j.issn.1004-9665.2000.03.013 [7] Hu Z Q, Wang X J, He A M. Distribution characteristic and development rules of ground fissures due to coal mining in windy and sandy region. J China Coal Soc, 2014, 39(1): 11胡振琪, 王新靜, 賀安民. 風積沙區采煤沉陷地裂縫分布特征與發生發育規律. 煤炭學報, 2014, 39(1):11 [8] Xu Z H, Li Q S, Li X B, et al. Structural evolution of overburden and surface damage caused by high-intensity mining with shallow depth. J China Coal Soc, 2020, 45(8): 2728 doi: 10.13225/j.cnki.jccs.2020.0917徐祝賀, 李全生, 李曉斌, 等. 淺埋高強度開采覆巖結構演化及地表損傷研究. 煤炭學報, 2020, 45(8):2728 doi: 10.13225/j.cnki.jccs.2020.0917 [9] Dai H Y, Luo J C, Guo J T, et al. In-site surveying and study on development laws of surface cracks by high-intensity mining in Shangwan Mine. Coal Sci Technol, 2020, 48(10): 124 doi: 10.13199/j.cnki.cst.2020.10.015戴華陽, 羅景程, 郭俊廷, 等. 上灣礦高強度開采地表裂縫發育規律實測研究. 煤炭科學技術, 2020, 48(10):124 doi: 10.13199/j.cnki.cst.2020.10.015 [10] Hou E K, Shou Z G, Xu Y N, et al. Application of UAV remote sensing technology in monitoring of coal mining-induced subsidence. Coal Geol Explor, 2017, 45(6): 102 doi: 10.3969/j.issn.1001-1986.2017.06.017侯恩科, 首召貴, 徐友寧, 等. 無人機遙感技術在采煤地面塌陷監測中的應用. 煤田地質與勘探, 2017, 45(6):102 doi: 10.3969/j.issn.1001-1986.2017.06.017 [11] Hou E K, Zhang J, Xie X S, et al. Contrast application of unmanned aerial vehicle remote sensing and satellite remote sensing technology relating to ground surface cracks recognition in coal mining area. Geol Bull China, 2019, 38(2-3): 443侯恩科, 張杰, 謝曉深, 等. 無人機遙感與衛星遙感在采煤地表裂縫識別中的對比. 地質通報, 2019, 38(2-3):443 [12] Zhou D W, Wu K, Bai Z H, et al. Formation and development mechanism of ground crack caused by coal mining: Effects of overlying key strata. Bull Eng Geol Environ, 2019, 78(2): 1025 doi: 10.1007/s10064-017-1108-2 [13] Wang Y G, Guo W B. Analysis of ground crack laws of mining subsidence. Chin J Geol Hazard Control, 2017, 28(1): 89 doi: 10.16031/j.cnki.issn.1003-8035.2017.01.14王云廣, 郭文兵. 采空塌陷區地表裂縫發育規律分析. 中國地質災害與防治學報, 2017, 28(1):89 doi: 10.16031/j.cnki.issn.1003-8035.2017.01.14 [14] Chen C, Hu Z Q. Research advances in formation mechanism of ground crack due to coal mining subsidence in China. J China Coal Soc, 2018, 43(3): 810陳超, 胡振琪. 我國采動地裂縫形成機理研究進展. 煤炭學報, 2018, 43(3):810 [15] Peng J, Li C, Xiang M X, et al. Influence of coal mining on phreatic aquifer and its environmental effects in Yulin-Shenmu-Fugu Area. Coal Sci Technol, 2018, 46(2): 156彭捷, 李成, 向茂西, 等. 榆神府區采動對潛水含水層的影響及其環境效應. 煤炭科學技術, 2018, 46(2):156 [16] Wang S M, Shen Y J, Sun Q, et al. Scientific issues of coal detraction mining geological assurance and their technology expectations in ecologically fragile mining areas of Western China. J Min Strata Control Eng, 2020, 2(4): 5王雙明, 申艷軍, 孫強, 等. 西部生態脆弱區煤炭減損開采地質保障科學問題及技術展望. 采礦與巖層控制工程學報, 2020, 2(4):5 [17] Fan L M, Ma X D, Li Y H, et al. Geological disasters and control technology in high intensity mining area of Western China. J China Coal Soc, 2017, 42(2): 276范立民, 馬雄德, 李永紅, 等. 西部高強度采煤區礦山地質災害現狀與防控技術. 煤炭學報, 2017, 42(2):276 [18] Hou E K, Chen Y, Che X Y, et al. Study on overburden failure characteristics and fracture evolution law of shallow buried coal seam through trench mining. Coal Sci Technol, 2021, 49(10): 185侯恩科, 陳育, 車曉陽, 等. 淺埋煤層過溝開采覆巖破壞特征及裂隙演化規律研究. 煤炭科學技術, 2021, 49(10):185 [19] Wang S M, Hou E K, Xie X S, et al. Study on influence of surface ecological environment caused by middle deep coal mining and the ways of restoration. Coal Sci Technol, 2021, 49(1): 19王雙明, 侯恩科, 謝曉深, 等. 中深部煤層開采對地表生態環境的影響及修復提升途徑研究. 煤炭科學技術, 2021, 49(1):19 [20] Liu H, He C G, Deng K Z, et al. Analysis of forming mechanism of collapsing ground fissure caused by mining. J Min Saf Eng, 2013, 30(3): 380劉輝, 何春桂, 鄧喀中, 等. 開采引起地表塌陷型裂縫的形成機理分析. 采礦與安全工程學報, 2013, 30(3):380 [21] Huang Q X, Du J W, Hou E K, et al. Research on overburden and ground surface cracks distribution and formation mechanism in shallow coal seams group mining. J Min Saf Eng, 2019, 36(1): 7黃慶享, 杜君武, 侯恩科, 等. 淺埋煤層群覆巖與地表裂隙發育規律和形成機理研究. 采礦與安全工程學報, 2019, 36(1):7 [22] Guo W B, Bai E H, Zhao G B. Current status and progress on overburden and surface damage and prevention technology of high-intensity mining. J China Coal Soc, 2020, 45(2): 509郭文兵, 白二虎, 趙高博. 高強度開采覆巖地表破壞及防控技術現狀與進展. 煤炭學報, 2020, 45(2):509 [23] Zhou J L, Huang Q X. Stability analysis of key stratum structures of large mining height longwall face in shallow coal seam. Chin J Rock Mech Eng, 2019, 38(7): 1396周金龍, 黃慶享. 淺埋大采高工作面頂板關鍵層結構穩定性分析. 巖石力學與工程學報, 2019, 38(7):1396 [24] Li L, Wu K, Hu Z Q, et al. Analysis of developmental features and causes of the ground cracks induced by oversized working face mining in an aeolian sand area. Environ Earth Sci, 2017, 76(3): 1 [25] Sun K, Li Y H, Liu H N, et al. “Opposite-slide”loess landslides and its formation mechanism in Binchang mining area. J China Coal Soc, 2017, 42(11): 2989孫魁, 李永紅, 劉海南, 等. 彬長礦區“對滑型”黃土滑坡及其形成機制. 煤炭學報, 2017, 42(11):2989 -