<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電磁攪拌對特大方坯結晶器內流場及溫度場影響

趙立華 苑一波 邢立東 包燕平

趙立華, 苑一波, 邢立東, 包燕平. 電磁攪拌對特大方坯結晶器內流場及溫度場影響[J]. 工程科學學報, 2023, 45(1): 64-71. doi: 10.13374/j.issn2095-9389.2021.06.25.001
引用本文: 趙立華, 苑一波, 邢立東, 包燕平. 電磁攪拌對特大方坯結晶器內流場及溫度場影響[J]. 工程科學學報, 2023, 45(1): 64-71. doi: 10.13374/j.issn2095-9389.2021.06.25.001
ZHAO Li-hua, YUAN Yi-bo, XING Li-dong, BAO Yan-ping. Effect of electromagnetic stirring in extra-large billet on the flow field and temperature field[J]. Chinese Journal of Engineering, 2023, 45(1): 64-71. doi: 10.13374/j.issn2095-9389.2021.06.25.001
Citation: ZHAO Li-hua, YUAN Yi-bo, XING Li-dong, BAO Yan-ping. Effect of electromagnetic stirring in extra-large billet on the flow field and temperature field[J]. Chinese Journal of Engineering, 2023, 45(1): 64-71. doi: 10.13374/j.issn2095-9389.2021.06.25.001

電磁攪拌對特大方坯結晶器內流場及溫度場影響

doi: 10.13374/j.issn2095-9389.2021.06.25.001
基金項目: 鋼鐵冶金新技術國家重點實驗室基金資助項目(41619018)
詳細信息
    通訊作者:

    E-mail: yuanyibo0705@163.com

  • 中圖分類號: TF777.2

Effect of electromagnetic stirring in extra-large billet on the flow field and temperature field

More Information
  • 摘要: 以某廠斷面為410 mm × 530 mm的特大方坯結晶器為原型,利用ANSYS有限元軟件建立三維數值模型,研究電磁攪拌對結晶器流場及溫度場的影響。施加電磁攪拌后,鋼液受到徑向電磁力,液面呈現旋轉流動趨勢。結晶器內鋼液最大切向速度隨著電流的增加而增大,隨著頻率的增加而減小。電磁攪拌的電流大小由0 增加到500 A時,液面波動由1.21 mm增加到4.35 mm。電磁攪拌能夠使鋼水的高溫區局限于連鑄結晶器上部,鋼水溫度更加均勻。同時鋼液的水平旋流能夠抑制初生坯殼的生長,降低坯殼的生長速度,使結晶器出口處坯殼厚度變薄。綜合分析,該廠在實際生產時合理的電磁攪拌的電流大小應為400 A,頻率為1.5 Hz,此時鋼渣液面波動約為2.73 mm,溫度場較為均勻。

     

  • 圖  1  結晶器(a)和水口(b)的網格劃分示意圖

    Figure  1.  Meshed computational model equipped with (a) a mold chamfer and (b) a four-port submerged entry nozzle (SEN)

    圖  2  電磁攪拌裝置圖(a)和安裝示意圖(b)

    Figure  2.  (a) Schematic illustration of the mold electromagnetic stirring(M-EMS) and (b) its install location

    圖  3  結晶器中心軸向線電磁攪拌強度測量值和計算值對比

    Figure  3.  Comparison of the calculated and measured magnetic flux density in M-EMS

    圖  4  無電磁攪拌(a)和施加電磁攪拌(b)情況下結晶器流場速度分布圖和流線圖

    Figure  4.  Velocity contour in the upper part of the mold (a) without EMS and (b) with EMS

    圖  5  電流強度對電磁攪拌中心速度的影響.(a)0 A;(b)300 A;(c)400 A;(d)500 A

    Figure  5.  Effect of the current intensity on the velocity distribution of the stirring center: (a) 0 A; (b) 300 A; (c) 400 A; (d) 500 A

    圖  6  不同電流強度下電磁攪拌中心切向速度大小

    Figure  6.  Tangential velocity of the electromagnetic stirring center under different current intensities

    圖  7  鋼渣界面速度大小分布云圖.(a)無電磁攪拌;(b)施加電磁攪拌

    Figure  7.  Velocity distribution of the steel-slag interface (a) without EMS and (b) with EMS

    圖  8  不同電流強度下鋼渣液面高度的分布.(a)0 A;(b)300 A;(c)400 A;(d)500 A

    Figure  8.  Distribution of the liquid level of the steel-slag surface at different current intensities:(a)0 A;(b)300 A;(c)400 A;(d)500 A

    圖  9  電磁攪拌中軸線最大磁感應強度測量值

    Figure  9.  Actual measurement of the magnetic induction at the axis of electromagnetic stirring

    圖  10  頻率對電磁攪拌中心切向速度的影響

    Figure  10.  Effect of the current frequency on the tangential velocity of the stirring center

    圖  11  水口沖擊方向截面的溫度分布和結晶器出口截面的液相分數分布.(a)0 A;(b)300 A;(c)400 A;(d)500 A)

    Figure  11.  Distribution of temperature in the impinging direction of the nozzle and the liquid fraction at the outlet of the mold: (a) 0 A ; (b) 300 A; (c) 400 A; (d) 500 A

    圖  12  坯殼厚度沿鑄造方向的增長情況

    Figure  12.  Growth of the solidified shell thickness along the casting direction

    表  1  模擬計算條件

    Table  1.   Simulation conditions

    ParametersValue
    Cross section of bloom/(mm×mm)410×530
    Submerged entry nozzleFour-port
    Casting speed/(m·min?10.43
    Casting temperature /K1790
    Density of steel /(kg·m?36970
    Density of slag /(kg·m?32500
    Viscosity of steel /(kg·m?1·s?10.00623
    Liquidus temperature /K1765
    Solidus temperature /K1698
    Steel resistivity /(Ω·m)1.4×10?6
    Copper plate resistivity /(Ω·m)1.7×10?8
    Running current of M-EMS /A200–600
    Running frequency of M-EMS /Hz1.5–3.5
    Permeability of iron core1000
    Permeability of steel1
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Cai K K. Continuous Casting Mold. Beijing: Metallurgical Industry Press, 2008

    蔡開科. 連鑄結晶器. 北京: 冶金工業出版社, 2008
    [2] Spitzer K H, Dubke M, Schwerdtfeger K. Rotational electromagnetic stirring in continuous casting of round strands. Metall Trans B, 1986, 17(1): 119 doi: 10.1007/BF02670825
    [3] Wu H J, Wei N, Bao Y P, et al. Effect of M-EMS on the solidification structure of a steel billet. Int J Miner Metall Mater, 2011, 18(2): 159 doi: 10.1007/s12613-011-0416-y
    [4] Thomas B G, Zhang L F. Mathematical modeling of fluid flow in continuous casting. ISIJ Int, 2001, 10(41): 1181
    [5] Wen Y M, Han Y S, Liu Q, et al. Optimization of multi-fields coupled molten steel behavior in bloom continuous casting. Iron Steel, 2018, 53(6): 53

    文艷梅, 韓延申, 劉青, 等. 大方坯結晶器內的多物理場模擬優化. 鋼鐵, 2018, 53(6):53
    [6] Yu Y, Li B K, Yang G. Numerical modeling of flow fields in the continuous casting process of steel under electromagnetic stirring. J Univ Sci Technol Beijing, 2011, 33(2): 157

    于洋, 李寶寬, 楊剛. 鋼連鑄電磁攪拌工藝中流場的數值模擬. 北京科技大學學報, 2011, 33(2):157
    [7] Maurya A, Jha P K. Influence of electromagnetic stirrer position on fluid flow and solidification in continuous casting mold. Appl Math Model, 2017, 48: 736 doi: 10.1016/j.apm.2017.02.029
    [8] Wang W W, Zhang J Q, Chen S Q, et al. Effect of nozzle outlet angle on the fluid flow and level fluctuation in a bloom casting mould. J Univ Sci Technol Beijing, 2007, 29(8): 816 doi: 10.3321/j.issn:1001-053x.2007.08.015

    王維維, 張家泉, 陳素瓊, 等. 水口側孔傾角對大方坯結晶器流場和液面波動的影響. 北京科技大學學報, 2007, 29(8):816 doi: 10.3321/j.issn:1001-053x.2007.08.015
    [9] Fang Q, Ni H W, Wang B, et al. Effects of EMS induced flow on solidification and solute transport in bloom mold. Metals, 2017, 7(3): 72 doi: 10.3390/met7030072
    [10] Fang Q, Ni H W, Zhang H, et al. The effects of a submerged entry nozzle on flow and initial solidification in a continuous casting bloom mold with electromagnetic stirring. Metals, 2017, 7(4): 146 doi: 10.3390/met7040146
    [11] He M L, Wang N, Chen M, et al. Physical and numerical simulation of the fluid flow and temperature distribution in bloom continuous casting mold. Steel Res Int, 2017, 88(9): 1600447 doi: 10.1002/srin.201600447
    [12] Aboutalebi M M, Labrecque C, D'Amours J, et al. Angular Re-positioning of a five ported SEN versus EMS braking to stabilize flows at the upper slag-liquid steel interface. Steel Res Int, 2019, 90(3): 1800429 doi: 10.1002/srin.201800429
    [13] Wang Y T, Yang Z G, Zhang X F, et al. Effects of electromagnetic stirring on the flow field and level fluctuation in bloom molds. J Univ Sci Technol Beijing, 2014, 36(10): 1354

    王亞濤, 楊振國, 張曉峰, 等. 電磁攪拌對大方坯結晶器流場和液面波動的影響. 北京科技大學學報, 2014, 36(10):1354
    [14] Li F S, Chen W Q. Numerical simulation of flow field and temperature distribution in continuously cast rectangular billet mold. Shanghai Met, 2016, 38(3): 73 doi: 10.3969/j.issn.1001-7208.2016.03.015

    李鳳善, 陳偉慶. 矩形坯連鑄結晶器流場和溫度場的數值模擬. 上海金屬, 2016, 38(3):73 doi: 10.3969/j.issn.1001-7208.2016.03.015
    [15] Li S X, Lan P, Tang H Y, et al. Study on the electromagnetic field, fluid flow, and solidification in a bloom continuous casting mold by numerical simulation. Steel Res Int, 2018, 89(12): 1800071 doi: 10.1002/srin.201800071
    [16] LÜ M, Mi X Y, Zhang C H, et al. Effect of continuous-casting parameters on carbon segregation in SWRH82B high-carbon steel. Chin J Eng. 2020, 42(Suppl 1): 102

    呂明, 米小雨, 張朝暉, 等. 連鑄工藝參數對SWRH82B高碳鋼碳偏析的影響. 工程科學學報. 2020, 42(增刊): 102
    [17] Wei N, Bao Y P, Wu H J, et al. Numerical simulation of 3-D electromagnetic field in a bloom continuous casting mold with electromagnetic stirring. J Univ Sci Technol Beijing, 2011, 33(6): 702

    魏寧, 包燕平, 吳華杰, 等. 大方坯連鑄結晶器電磁攪拌三維電磁場的數值模擬. 北京科技大學學報, 2011, 33(6):702
    [18] Maurya A, Jha P K. Two-phase analysis of interface level fluctuation in continuous casting mold with electromagnetic stirring. Int J Numer Methods Heat Fluid Flow, 2018, 28(9): 2036 doi: 10.1108/HFF-08-2017-0310
    [19] Zhang J, Yang L, Han Z F, et al. Level fluctuation in continuous casting mold with electromagnetic stirring. J Iron Steel Res, 2016, 28(8): 17

    張靜, 楊龍, 韓澤峰, 等. 電磁攪拌作用下連鑄結晶器內液面波動行為. 鋼鐵研究學報, 2016, 28(8):17
    [20] Li S X, Zhang X M, Li L, et al. Representation and effect of mushy zone coefficient on coupled flow and solidification simulation during continuous casting. Chin J Eng. 2019, 41(2): 199

    李少翔, 張曉萌, 李亮, 等. 連鑄流動與凝固耦合模擬中糊狀區系數的表征及影響. 工程科學學報. 2019, 41(2): 199
    [21] Hu Q, Zhang S, Wang P, et al. Liquid level fluctuation and slag entrainment behavior in a bloom mold. China Metall, 2020, 30(6): 63

    胡群, 張碩, 王璞, 等. 大方坯結晶器內液面波動與卷渣行為. 中國冶金, 2020, 30(6):63
    [22] An H H, Bao Y P, Wang M, et al. Optimization of in-mold electromagnetic stirring in continuously cast steel billet and bloom by electromagnetic torque detecting // 2018 National Steelmaking Conference. Chengdu, 2018: 1

    安航航, 包燕平, 王敏, 等. 基于電磁力矩檢測的方坯連鑄結晶器電磁攪拌工藝參數優化//2018年(第二十屆)全國煉鋼學術會議. 成都, 2018: 1
    [23] Mao B. Theory and Technology of Electromagnetic Stirring for Continuous Casting. Beijing: Metallurgical Industry Press, 2012

    毛斌. 連續鑄鋼用電磁攪拌的理論與技術. 北京: 冶金工業出版社, 2012
    [24] Zhang J, Wang E G, Deng A Y, et al. Numerical simulation of flow field in bloom continuous casting mold with electromagnetic stirring. Adv Mater Res, 2010, 146-147: 272 doi: 10.4028/www.scientific.net/AMR.146-147.272
    [25] Ren B Z, Chen D F, Wang H D, et al. Numerical simulation of fluid flow and solidification in bloom continuous casting mould with electromagnetic stirring. Ironmak Steelmak, 2015, 42(6): 401 doi: 10.1179/1743281214Y.0000000240
    [26] Zhang W J, Luo S, Chen Y, et al. Numerical simulation of fluid flow, heat transfer, species transfer, and solidification in billet continuous casting mold with M-EMS. Metals, 2019, 9(1): 66 doi: 10.3390/met9010066
  • 加載中
圖(12) / 表(1)
計量
  • 文章訪問數:  812
  • HTML全文瀏覽量:  335
  • PDF下載量:  116
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-06-25
  • 網絡出版日期:  2021-08-30
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回