Effect of electromagnetic stirring in extra-large billet on the flow field and temperature field
-
摘要: 以某廠斷面為410 mm × 530 mm的特大方坯結晶器為原型,利用ANSYS有限元軟件建立三維數值模型,研究電磁攪拌對結晶器流場及溫度場的影響。施加電磁攪拌后,鋼液受到徑向電磁力,液面呈現旋轉流動趨勢。結晶器內鋼液最大切向速度隨著電流的增加而增大,隨著頻率的增加而減小。電磁攪拌的電流大小由0 增加到500 A時,液面波動由1.21 mm增加到4.35 mm。電磁攪拌能夠使鋼水的高溫區局限于連鑄結晶器上部,鋼水溫度更加均勻。同時鋼液的水平旋流能夠抑制初生坯殼的生長,降低坯殼的生長速度,使結晶器出口處坯殼厚度變薄。綜合分析,該廠在實際生產時合理的電磁攪拌的電流大小應為400 A,頻率為1.5 Hz,此時鋼渣液面波動約為2.73 mm,溫度場較為均勻。Abstract: As the “heart” of continuous caster, the flow field of mold directly affects the quality of the slab. For a billet caster, in-mold electromagnetic stirring (M-EMS), as its necessary configuration, can improve the flow field in the mold, homogenize the liquid steel temperature, improve segregation, and improve the slab quality. This paper utilized a 410 mm × 530 mm large billet caster in a factory, which is one of the largest section casters in China. Based on it, a three-dimensional numerical model was established using the ANSYS finite element software to study the influence of electromagnetic stirring on the flow field, liquid level fluctuation, and temperature field of the mold. After electromagnetic stirring was applied, the liquid steel was subjected to a radial electromagnetic force, and the liquid surface shows a rotating flow trend. The maximum tangential velocity of molten steel increases with the increase of current and decreases with the increase of frequency. When the current of electromagnetic stirring increases from 0 A to 500 A, the fluctuation of the liquid level increases from 1.21 mm to 4.35 mm. The maximum tangential velocity of the electromagnetic stirring center increases from 0.02 m?s?1 to 0.21 m?s?1. Electromagnetic stirring can restrain the impact of the high-temperature jet from the nozzle, move the high-temperature zone of molten steel upward, and make the temperature of molten steel more uniform. Under the action of a radial electromagnetic force, the horizontal swirl of liquid steel can inhibit the growth of the primary shell, reduce the growth rate of the shell, and reduce the thickness of the shell out of the mold by about 2.3 mm. The comprehensive analysis shows that the reasonable current of electromagnetic stirring is 400 A and the frequency is 1.5 Hz. At this time, the fluctuation of the slag level is about 2.73 mm, and the temperature field is relatively uniform.
-
Key words:
- extra-large boom /
- electromagnetic stirring /
- flow field /
- temperature field /
- numerical simulation
-
表 1 模擬計算條件
Table 1. Simulation conditions
Parameters Value Cross section of bloom/(mm×mm) 410×530 Submerged entry nozzle Four-port Casting speed/(m·min?1) 0.43 Casting temperature /K 1790 Density of steel /(kg·m?3) 6970 Density of slag /(kg·m?3) 2500 Viscosity of steel /(kg·m?1·s?1) 0.00623 Liquidus temperature /K 1765 Solidus temperature /K 1698 Steel resistivity /(Ω·m) 1.4×10?6 Copper plate resistivity /(Ω·m) 1.7×10?8 Running current of M-EMS /A 200–600 Running frequency of M-EMS /Hz 1.5–3.5 Permeability of iron core 1000 Permeability of steel 1 www.77susu.com -
參考文獻
[1] Cai K K. Continuous Casting Mold. Beijing: Metallurgical Industry Press, 2008蔡開科. 連鑄結晶器. 北京: 冶金工業出版社, 2008 [2] Spitzer K H, Dubke M, Schwerdtfeger K. Rotational electromagnetic stirring in continuous casting of round strands. Metall Trans B, 1986, 17(1): 119 doi: 10.1007/BF02670825 [3] Wu H J, Wei N, Bao Y P, et al. Effect of M-EMS on the solidification structure of a steel billet. Int J Miner Metall Mater, 2011, 18(2): 159 doi: 10.1007/s12613-011-0416-y [4] Thomas B G, Zhang L F. Mathematical modeling of fluid flow in continuous casting. ISIJ Int, 2001, 10(41): 1181 [5] Wen Y M, Han Y S, Liu Q, et al. Optimization of multi-fields coupled molten steel behavior in bloom continuous casting. Iron Steel, 2018, 53(6): 53文艷梅, 韓延申, 劉青, 等. 大方坯結晶器內的多物理場模擬優化. 鋼鐵, 2018, 53(6):53 [6] Yu Y, Li B K, Yang G. Numerical modeling of flow fields in the continuous casting process of steel under electromagnetic stirring. J Univ Sci Technol Beijing, 2011, 33(2): 157于洋, 李寶寬, 楊剛. 鋼連鑄電磁攪拌工藝中流場的數值模擬. 北京科技大學學報, 2011, 33(2):157 [7] Maurya A, Jha P K. Influence of electromagnetic stirrer position on fluid flow and solidification in continuous casting mold. Appl Math Model, 2017, 48: 736 doi: 10.1016/j.apm.2017.02.029 [8] Wang W W, Zhang J Q, Chen S Q, et al. Effect of nozzle outlet angle on the fluid flow and level fluctuation in a bloom casting mould. J Univ Sci Technol Beijing, 2007, 29(8): 816 doi: 10.3321/j.issn:1001-053x.2007.08.015王維維, 張家泉, 陳素瓊, 等. 水口側孔傾角對大方坯結晶器流場和液面波動的影響. 北京科技大學學報, 2007, 29(8):816 doi: 10.3321/j.issn:1001-053x.2007.08.015 [9] Fang Q, Ni H W, Wang B, et al. Effects of EMS induced flow on solidification and solute transport in bloom mold. Metals, 2017, 7(3): 72 doi: 10.3390/met7030072 [10] Fang Q, Ni H W, Zhang H, et al. The effects of a submerged entry nozzle on flow and initial solidification in a continuous casting bloom mold with electromagnetic stirring. Metals, 2017, 7(4): 146 doi: 10.3390/met7040146 [11] He M L, Wang N, Chen M, et al. Physical and numerical simulation of the fluid flow and temperature distribution in bloom continuous casting mold. Steel Res Int, 2017, 88(9): 1600447 doi: 10.1002/srin.201600447 [12] Aboutalebi M M, Labrecque C, D'Amours J, et al. Angular Re-positioning of a five ported SEN versus EMS braking to stabilize flows at the upper slag-liquid steel interface. Steel Res Int, 2019, 90(3): 1800429 doi: 10.1002/srin.201800429 [13] Wang Y T, Yang Z G, Zhang X F, et al. Effects of electromagnetic stirring on the flow field and level fluctuation in bloom molds. J Univ Sci Technol Beijing, 2014, 36(10): 1354王亞濤, 楊振國, 張曉峰, 等. 電磁攪拌對大方坯結晶器流場和液面波動的影響. 北京科技大學學報, 2014, 36(10):1354 [14] Li F S, Chen W Q. Numerical simulation of flow field and temperature distribution in continuously cast rectangular billet mold. Shanghai Met, 2016, 38(3): 73 doi: 10.3969/j.issn.1001-7208.2016.03.015李鳳善, 陳偉慶. 矩形坯連鑄結晶器流場和溫度場的數值模擬. 上海金屬, 2016, 38(3):73 doi: 10.3969/j.issn.1001-7208.2016.03.015 [15] Li S X, Lan P, Tang H Y, et al. Study on the electromagnetic field, fluid flow, and solidification in a bloom continuous casting mold by numerical simulation. Steel Res Int, 2018, 89(12): 1800071 doi: 10.1002/srin.201800071 [16] LÜ M, Mi X Y, Zhang C H, et al. Effect of continuous-casting parameters on carbon segregation in SWRH82B high-carbon steel. Chin J Eng. 2020, 42(Suppl 1): 102呂明, 米小雨, 張朝暉, 等. 連鑄工藝參數對SWRH82B高碳鋼碳偏析的影響. 工程科學學報. 2020, 42(增刊): 102 [17] Wei N, Bao Y P, Wu H J, et al. Numerical simulation of 3-D electromagnetic field in a bloom continuous casting mold with electromagnetic stirring. J Univ Sci Technol Beijing, 2011, 33(6): 702魏寧, 包燕平, 吳華杰, 等. 大方坯連鑄結晶器電磁攪拌三維電磁場的數值模擬. 北京科技大學學報, 2011, 33(6):702 [18] Maurya A, Jha P K. Two-phase analysis of interface level fluctuation in continuous casting mold with electromagnetic stirring. Int J Numer Methods Heat Fluid Flow, 2018, 28(9): 2036 doi: 10.1108/HFF-08-2017-0310 [19] Zhang J, Yang L, Han Z F, et al. Level fluctuation in continuous casting mold with electromagnetic stirring. J Iron Steel Res, 2016, 28(8): 17張靜, 楊龍, 韓澤峰, 等. 電磁攪拌作用下連鑄結晶器內液面波動行為. 鋼鐵研究學報, 2016, 28(8):17 [20] Li S X, Zhang X M, Li L, et al. Representation and effect of mushy zone coefficient on coupled flow and solidification simulation during continuous casting. Chin J Eng. 2019, 41(2): 199李少翔, 張曉萌, 李亮, 等. 連鑄流動與凝固耦合模擬中糊狀區系數的表征及影響. 工程科學學報. 2019, 41(2): 199 [21] Hu Q, Zhang S, Wang P, et al. Liquid level fluctuation and slag entrainment behavior in a bloom mold. China Metall, 2020, 30(6): 63胡群, 張碩, 王璞, 等. 大方坯結晶器內液面波動與卷渣行為. 中國冶金, 2020, 30(6):63 [22] An H H, Bao Y P, Wang M, et al. Optimization of in-mold electromagnetic stirring in continuously cast steel billet and bloom by electromagnetic torque detecting // 2018 National Steelmaking Conference. Chengdu, 2018: 1安航航, 包燕平, 王敏, 等. 基于電磁力矩檢測的方坯連鑄結晶器電磁攪拌工藝參數優化//2018年(第二十屆)全國煉鋼學術會議. 成都, 2018: 1 [23] Mao B. Theory and Technology of Electromagnetic Stirring for Continuous Casting. Beijing: Metallurgical Industry Press, 2012毛斌. 連續鑄鋼用電磁攪拌的理論與技術. 北京: 冶金工業出版社, 2012 [24] Zhang J, Wang E G, Deng A Y, et al. Numerical simulation of flow field in bloom continuous casting mold with electromagnetic stirring. Adv Mater Res, 2010, 146-147: 272 doi: 10.4028/www.scientific.net/AMR.146-147.272 [25] Ren B Z, Chen D F, Wang H D, et al. Numerical simulation of fluid flow and solidification in bloom continuous casting mould with electromagnetic stirring. Ironmak Steelmak, 2015, 42(6): 401 doi: 10.1179/1743281214Y.0000000240 [26] Zhang W J, Luo S, Chen Y, et al. Numerical simulation of fluid flow, heat transfer, species transfer, and solidification in billet continuous casting mold with M-EMS. Metals, 2019, 9(1): 66 doi: 10.3390/met9010066 -