<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

TiO2光催化強化[HO2MMim][HSO4]?H2O2脫除煤中有機硫的研究

王蘭云 溫興琳 劉澤健 張亞娟 盧曉冉 劉真 周華健 徐永亮

王蘭云, 溫興琳, 劉澤健, 張亞娟, 盧曉冉, 劉真, 周華健, 徐永亮. TiO2光催化強化[HO2MMim][HSO4]?H2O2脫除煤中有機硫的研究[J]. 工程科學學報, 2023, 45(1): 72-81. doi: 10.13374/j.issn2095-9389.2021.06.24.003
引用本文: 王蘭云, 溫興琳, 劉澤健, 張亞娟, 盧曉冉, 劉真, 周華健, 徐永亮. TiO2光催化強化[HO2MMim][HSO4]?H2O2脫除煤中有機硫的研究[J]. 工程科學學報, 2023, 45(1): 72-81. doi: 10.13374/j.issn2095-9389.2021.06.24.003
WANG Lan-yun, WEN Xing-lin, LIU Ze-jian, ZHANG Ya-juan, LU Xiao-ran, LIU Zhen, ZHOU Hua-jian, XU Yong-liang. Photocatalytic enhanced [HO2MMim][HSO4]?H2O2 removal of organic sulfur from coal[J]. Chinese Journal of Engineering, 2023, 45(1): 72-81. doi: 10.13374/j.issn2095-9389.2021.06.24.003
Citation: WANG Lan-yun, WEN Xing-lin, LIU Ze-jian, ZHANG Ya-juan, LU Xiao-ran, LIU Zhen, ZHOU Hua-jian, XU Yong-liang. Photocatalytic enhanced [HO2MMim][HSO4]?H2O2 removal of organic sulfur from coal[J]. Chinese Journal of Engineering, 2023, 45(1): 72-81. doi: 10.13374/j.issn2095-9389.2021.06.24.003

TiO2光催化強化[HO2MMim][HSO4]?H2O2脫除煤中有機硫的研究

doi: 10.13374/j.issn2095-9389.2021.06.24.003
基金項目: 國家自然科學基金資助項目(51874124,52074108); 河南科技攻關資助項目(212102310007); 河南理工大學杰出青年基金資助項目(J2019-5)
詳細信息
    通訊作者:

    E-mail: xylcumt@hpu.edu.cn

  • 中圖分類號: TF704.3

Photocatalytic enhanced [HO2MMim][HSO4]?H2O2 removal of organic sulfur from coal

More Information
  • 摘要: 燃煤中的硫嚴重影響了煤炭的高效利用,將光催化氧化引入到萃取脫硫體系,可以顯著地提高離子液體萃取脫硫效率。為了進一步研究脫硫機理,采用實驗結合計算機仿真模擬對其進行了分析。實驗結果表明將光催化反應過程與離子液體萃取過程耦合,可有效脫除煤中的有機硫,[HO2MMim][HSO4]?H2O?H2O2?TiO2(質量比5∶5∶10∶4)光催化處理后的煤的有機硫脫硫率最高可達12.40%。Materials Studio分析得出由光催化產生的羥基自由基(·OH)具有較強的氧化性,·OH的氧原子附近所在區域呈負電性,容易與噻吩中S原子的正電勢點產生靜電力并形成S=O雙鍵;另外,離子液體的加入使得原本噻吩環上的最低空軌道消失,還降低了最高占據分子軌道(HOMO)和最低未占分子軌道(LUMO)的能級差,使反應更容易進行。使用COSMO軟件分析發現離子液萃取作用體現在[HO2MMim][HSO4]中咪唑的五元雜環結構通過范德華力與噻吩、砜分子之間成鍵,使硫化物不斷被萃取到離子液體相中;外加氧化劑使反應中化學勢較高的砜比噻吩更容易進入到化學勢低的離子液[HO2MMim][HSO4]中。

     

  • 圖  1  常溫常壓下不同劑量的溶劑對煤有機硫脫硫率和無機硫脫硫率的影響

    Figure  1.  Effect of different dosages of solvents on coal organic sulfur desulfurization rate and inorganic sulfur desulfurization rate under normal temperature and pressure

    圖  2  脫硫機理圖

    Figure  2.  Desulfurization mechanism diagram

    圖  3  光照時間對脫硫率的影響

    Figure  3.  Effect of ultraviolet (UV) irradiation time on the desulfurization rate

    圖  4  常溫常壓下處理前后煤的XPS光譜圖

    Figure  4.  X-ray photoelectron spectroscopy (XPS) spectra of coal before and after treatment at normal temperature and pressure

    圖  5  常溫常壓下原煤與光催化處理后煤中各種形態硫的相對含量

    Figure  5.  Relative content of various forms of sulfur in raw coal and coal after photocatalytic treatment at normal temperature and pressure

    圖  6  噻吩、[HO2MMim][HSO4]和H2O2前線軌道等值面及其能量

    Figure  6.  Frontal orbital isosurface and energy of thiophene, [HO2MMim][HSO4] and H2O2

    圖  7  分子表面的屏蔽導體電荷密度分布σ-profile圖(a)和化學勢曲線σ-potential圖(b)

    Figure  7.  Charge density distribution σ-profile diagram (a) and chemical potential curve σ-potential diagram (b) of the shielded conductor on the molecular surface

    表  1  干燥煤的工業分析和元素分析(質量分數)

    Table  1.   Industrial analysis and elemental analysis of dry coal (mass fraction) %

    SampleMadAadVadFCadST,CSRaw, O, CSRaw, I, C
    Air-dried raw coal2.794.6439.3753.202.191.290.9
    下載: 導出CSV

    表  2  同一反應時間煤中的硫含量和光催化煤脫硫率

    Table  2.   Sulfur content in coal and photocatalytic coal desulfurization rate at the same reaction time

    ItemsSampleThe mass ratio of each component in the sampleST, C/%DR, O, C/%DR, I, C/%DS /%
    1#Raw coal2.19
    2#Raw coal–[HO2MMim][HSO4]–H2O2
    (Avoid light)
    3∶1∶101.876.2026.6714.61
    3#Raw coal–[HO2MMim][HSO4]–H2O23∶1∶101.826.9831.1116.89
    4#Raw coal–[HO2MMim][HSO4]–H2O2–TiO23∶1∶10∶41.6810.0842.2223.29
    3∶5∶10∶41.8612.4018.8915.07
    3∶10∶10∶41.99.3018.8913.24
    5#Raw coal–[HO2MMim][HSO4]–H2O–TiO23∶5∶10∶41.9711.638.8910.50
    6#Raw coal–H2O2–TiO2 (light time 3 h)3∶10∶42.036.987.787.31
    Raw coal–H2O2–TiO2 1.8410.8523.3315.98
    Raw coal–H2O2–TiO2 (light time 9 h)1.856.2028.8915.53
    7#Raw coal–H2O–H2O2–TiO23∶1∶10∶41.867.7525.5615.07
    3∶5∶10∶41.9110.8515.5612.79
    3∶10∶10∶41.836.9830.0016.44
    8#Raw coal–[HO2MMim][HSO4]–H2O–H2O2–TiO23∶5∶5∶10∶41.8310.8524.4416.44
    3∶5∶10∶10∶41.878.5323.3314.61
    下載: 導出CSV

    表  3  溶質在溶劑中的溶解度、化學勢、靜電能、氫鍵能和范德華力

    Table  3.   Solubility, chemical potential, electrostatic energy, hydrogen bond energy, and van der Waals force of solute in solvent

    SoluteSolventSolubility,
    Log10x
    Chemical potential/
    (kJ· mol?1)
    Electrostatic energy/
    (kJ· mol?1)
    Hydrogen bond/
    (kJ· mol?1)
    Van der Waals forces/
    (kJ· mol?1)
    Thiophene[HO2MMim][HSO4]?5.549011.871511.95310.0130?62.4057252
    H2O2?9.891117.772518.09190?56.2682
    Sulfone[HO2MMim][HSO4]?1.945715.508713.7912?2.5133?72.4048
    H2O2?8.963112.227713.8393?9.8744?64.5552
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Francisco M, Arce A, Soto A. Ionic liquids on desulfurization of fuel oils. Fluid Phase Equilibria, 2010, 294(1-2): 39 doi: 10.1016/j.fluid.2009.12.020
    [2] Vohra A, Goswami D Y, Deshpande D A, et al. Enhanced photocatalytic inactivation of bacterial spores on surfaces in air. J Ind Microbiol Biotechnol, 2005, 32(8): 364 doi: 10.1007/s10295-005-0006-y
    [3] Srinivasan S, Escobar D, Goswami Y, et al. Effects of catalysts doping on the thermal decomposition behavior of Zn(BH4)2. Int J Hydrog Energy, 2008, 33(9): 2268
    [4] Bui T T L, Nguyen D D, Ho S V, et al. Synthesis, characterization and application of some non-halogen ionic liquids as green solvents for deep desulfurization of diesel oil. Fuel, 2017, 191: 54 doi: 10.1016/j.fuel.2016.11.044
    [5] Cummings J, Shah K, Atkin R, et al. Physicochemical interactions of ionic liquids with coal; the viability of ionic liquids for pre-treatments in coal liquefaction. Fuel, 2015, 143: 244 doi: 10.1016/j.fuel.2014.11.042
    [6] Zheng D, Zhu W S, Xun S H, et al. Deep oxidative desulfurization of dibenzothiophene using low-temperature-mediated titanium dioxide catalyst in ionic liquids. Fuel, 2015, 159: 446 doi: 10.1016/j.fuel.2015.06.090
    [7] Jiang B, Yang H W, Zhang L H, et al. Efficient oxidative desulfurization of diesel fuel using amide-based ionic liquids. Chem Eng J, 2016, 283: 89 doi: 10.1016/j.cej.2015.07.070
    [8] Kianpour E, Azizian S, Yarie M, et al. A task-specific phosphonium ionic liquid as an efficient extractant for green desulfurization of liquid fuel: An experimental and computational study. Chem Eng J, 2016, 295: 500 doi: 10.1016/j.cej.2016.03.072
    [9] Kim J W, Kim D, Ra C S, et al. Synthesis of ionic liquids based on alkylimidazolium salts and their coal dissolution and dispersion properties. J Ind Eng Chem, 2014, 20(2): 372 doi: 10.1016/j.jiec.2013.04.039
    [10] Safa M, Mokhtarani B, Mortaheb H R. Deep extractive desulfurization of dibenzothiophene with imidazolium or pyridinium-based ionic liquids. Chem Eng Res Des, 2016, 111: 323 doi: 10.1016/j.cherd.2016.04.021
    [11] Li J, Wang J W, Wu M Y, et al. Deep deterpenation of citrus essential oils intensified by in situ formation of a deep eutectic solvent in associative extraction. Ind Eng Chem Res, 2020, 59(19): 9223 doi: 10.1021/acs.iecr.0c00442
    [12] Qi Y H, Bi W Q, Wang X, et al. Progress in catalytic oxidation and desulfurization of ionic liquids technology. Petrochem Technol Appl, 2019, 37(2): 144 doi: 10.3969/j.issn.1009-0045.2019.02.016

    齊玉歡, 畢維強, 王旭, 等. 離子液體催化氧化脫硫技術進展. 石化技術與應用, 2019, 37(2):144 doi: 10.3969/j.issn.1009-0045.2019.02.016
    [13] Wang L Y, Xu Y L, Jiang S G, et al. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal. Saf Sci, 2012, 50(7): 1528 doi: 10.1016/j.ssci.2012.03.006
    [14] Saikia B K, Khound K, Sahu O P, et al. Feasibility studies on cleaning of high sulfur coals by using ionic liquids. Int J Coal Sci Technol, 2015, 2(3): 202 doi: 10.1007/s40789-015-0074-1
    [15] Saikia B K, Khound K, Baruah B P. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids. Energy Convers Manag, 2014, 81: 298 doi: 10.1016/j.enconman.2014.02.043
    [16] Xu Y L, Liu Y, Bu Y C, et al. Review on the ionic liquids affecting the desulfurization of coal by chemical agents. J Clean Prod, 2021, 284: 124788 doi: 10.1016/j.jclepro.2020.124788
    [17] Gong X, Nie Y, Dai F. Study on hydrogenation desulfurization of thiophene under ionic liquids. Comput Appl Chem, 2013, 30(5): 451

    鞏學, 聶毅, 代飛. 離子液體作用下的噻吩加氫脫除機理研究. 計算機與應用化學, 2013, 30(5):451
    [18] Lin S T, Sandler S I. A priori phase equilibrium prediction from a segment contribution solvation model. Ind Eng Chem Res, 2002, 41(5): 899 doi: 10.1021/ie001047w
    [19] Chen P. Application of XPS in study forms of organic sulfur in macerals of Yanzhou coal. J Fuel Chem Technol, 1997, 25(3): 238

    陳鵬. 用XPS研究兗州煤各顯微組分中有機硫存在形態. 燃料化學學報, 1997, 25(3):238
    [20] Ge T, Zhang M X, Min F F. Response regularity of organic sulfur in coking coal to microwave. J China Coal Soc, 2015, 40(7): 1648

    葛濤, 張明旭, 閔凡飛. 煉焦煤中有機硫對微波的響應規律. 煤炭學報, 2015, 40(7):1648
    [21] Ning H S. Preparation of Triethylamine Modified Titanium Dioxide Film in Normal Temperature and Its’ Photocatalytic Performance Study [Dissertation]. Hangzhou: Zhejiang University, 2008

    寧海水. 三乙胺改性TiO2薄膜的常溫制備及光催化性能研究[學位論文]. 杭州: 浙江大學, 2008
    [22] Chen H, Zong Z M, Zhang J W, et al. Analysis of products from the oxidation of Heidaigou coal residue with H2O2 aqueous under mild condition. J China Univ Min Technol, 2008, 37(3): 347 doi: 10.3321/j.issn:1000-1964.2008.03.014

    陳虹, 宗志敏, 張佳偉, 等. 溫和條件下黑岱溝萃余煤的雙氧水氧化產物分析. 中國礦業大學學報, 2008, 37(3):347 doi: 10.3321/j.issn:1000-1964.2008.03.014
    [23] Cui Y M, Han J X. Current status of research and prospect on photocatalytic degradation of organic pollutants in water. J Fuel Chem Technol, 2004, 32(1): 123 doi: 10.3969/j.issn.0253-2409.2004.01.025

    崔玉民, 韓金霞. 光催化降解水中有機污染物研究現狀與展望. 燃料化學學報, 2004, 32(1):123 doi: 10.3969/j.issn.0253-2409.2004.01.025
    [24] Xu G L, Lü W J, Liu Y F, et al. Effect of external electric field on the optical excitation of silicon dioxide. Acta Phys Sin, 2009, 58(5): 3058 doi: 10.3321/j.issn:1000-3290.2009.05.030

    徐國亮, 呂文靜, 劉玉芳, 等. 外電場作用下二氧化硅分子的光激發特性研究. 物理學報, 2009, 58(5):3058 doi: 10.3321/j.issn:1000-3290.2009.05.030
    [25] Zhu W S, Wang C, Li H P, et al. One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent. Green Chem, 2015, 17(4): 2464 doi: 10.1039/C4GC02425G
    [26] Sun B, Yu X, Wang L, et al. Enhanced visible light photocatalytic oxidative desulfurization by BiOBr-graphene composite. J Fuel Chem Technol, 2016, 44(9): 1074 doi: 10.1016/S1872-5813(16)30049-4
    [27] Wu Y F, Gao X M, Fu F, et al. Preparation of BiVO4 photocatalyst and its performance in the oxidative desulfurization of modeling gasoline. Chem React Eng Technol, 2011, 27(1): 92 doi: 10.3969/j.issn.1001-7631.2011.01.019

    武玉飛, 高曉明, 付峰, 等. BiVO4光催化劑的合成及其用于模擬汽油氧化脫硫的研究. 化學反應工程與工藝, 2011, 27(1):92 doi: 10.3969/j.issn.1001-7631.2011.01.019
    [28] Wu P W, Xun S H, Jiang W, et al. Recent progress on extractive desulfurization of fuel oils through reactions based on ionic liquids as solvents and catalysts. CIESC J, 2021, 72(1): 276

    吳沛文, 荀蘇杭, 蔣偉, 等. 離子液體反應型萃取燃油脫硫研究進展. 化工學報, 2021, 72(1):276
    [29] Yang N N, Wang Q, Zang S L, et al. Application progress of ionic liquids in extraction desulfurization. Contemp Chem Ind, 2016, 45(12): 2859 doi: 10.3969/j.issn.1671-0460.2016.12.052

    楊楠楠, 王強, 臧樹良, 等. 離子液體在萃取脫硫研究中的應用進展. 當代化工, 2016, 45(12):2859 doi: 10.3969/j.issn.1671-0460.2016.12.052
    [30] Wang L Y, Jin G S, Xu Y L. Desulfurization of coal using four ionic liquids with [HSO4]?. Fuel, 2019, 236: 1181 doi: 10.1016/j.fuel.2018.09.082
    [31] Aihara J I. Reduced HOMO–LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A, 1999, 103(37): 7487 doi: 10.1021/jp990092i
    [32] Islam M R, Chen C C. COSMO-SAC sigma profile generation with conceptual segment concept. Ind Eng Chem Res, 2015, 54(16): 4441 doi: 10.1021/ie503829b
    [33] Klamt A, Eckert F. COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilibria, 2000, 172(1): 43 doi: 10.1016/S0378-3812(00)00357-5
    [34] Eckert F, Klamt A. Fast solvent screening via quantum chemistry: COSMO-RS approach. Aiche J, 2002, 48(2): 369 doi: 10.1002/aic.690480220
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數:  488
  • HTML全文瀏覽量:  213
  • PDF下載量:  46
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-06-24
  • 網絡出版日期:  2021-09-09
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回