-
摘要: 燃煤中的硫嚴重影響了煤炭的高效利用,將光催化氧化引入到萃取脫硫體系,可以顯著地提高離子液體萃取脫硫效率。為了進一步研究脫硫機理,采用實驗結合計算機仿真模擬對其進行了分析。實驗結果表明將光催化反應過程與離子液體萃取過程耦合,可有效脫除煤中的有機硫,[HO2MMim][HSO4]?H2O?H2O2?TiO2(質量比5∶5∶10∶4)光催化處理后的煤的有機硫脫硫率最高可達12.40%。Materials Studio分析得出由光催化產生的羥基自由基(·OH)具有較強的氧化性,·OH的氧原子附近所在區域呈負電性,容易與噻吩中S原子的正電勢點產生靜電力并形成S=O雙鍵;另外,離子液體的加入使得原本噻吩環上的最低空軌道消失,還降低了最高占據分子軌道(HOMO)和最低未占分子軌道(LUMO)的能級差,使反應更容易進行。使用COSMO軟件分析發現離子液萃取作用體現在[HO2MMim][HSO4]中咪唑的五元雜環結構通過范德華力與噻吩、砜分子之間成鍵,使硫化物不斷被萃取到離子液體相中;外加氧化劑使反應中化學勢較高的砜比噻吩更容易進入到化學勢低的離子液[HO2MMim][HSO4]中。Abstract: Coal is considered one of the largest energy sources globally, but the sulfur in coal combustion seriously affects the efficient utilization of coal. Moreover, the sulfide produced by burning high sulfur coal is one of the leading causes of several diseases and environmental pollution. Incorporating photocatalytic oxidation into the extraction desulfurization system can significantly improve the efficiency of ionic liquid reactive extraction desulfurization. To further study the mechanism of desulfurization, experiment and computer simulation were used to analyze it. The experimental results show that coupling the photocatalytic reaction process and the ionic liquid extraction process can effectively remove organic sulfur in coal. The desulfurization rate of organic sulfur in the coal treated by [HO2MMim][HSO4]–H2O–H2O2–TiO2(mass ratio 5∶5∶10∶4)can reach 12.40%. In addition, an appropriate amount of water can improve the desulfurization rate of coal, but an excessive amount of aqueous solution can reduce the concentration of hydrogen peroxide and the organic sulfur desulfurization rate in coal. Materials Studio analysis shows that the hydroxyl radical (·OH) generated by photocatalytic activity has strong oxidability, and the area near the oxygen atom of ·OH is electronegative, which is easy to form S=O double bond with the positively charged S atom in thiophene via electrostatic attraction. In addition, the addition of ionic liquid makes the original lowest vacant orbital on the thiophene ring disappear. Moreover, it lowers the energy level difference between the HOMO and the LUMO, making the reaction easier to proceed with. Using COSMO analysis, it is found that the five-member heterocyclic structure of imidazole in [HO2MMim][HSO4] formed bonds with thiophene and sulfone molecules through van der Waals forces; thus, sulfide was constantly extracted into the ionic liquid phase and that adding the oxidizer can make it easier for sulfone with higher chemical potential to enter the lower chemical potential ionic solution [HO2MMim][HSO4] than thiophene.
-
Key words:
- photocatalytic oxidative desulfurization /
- thiophene /
- sulfone /
- hydroxyl radical /
- Materials Studio /
- COSMO
-
表 1 干燥煤的工業分析和元素分析(質量分數)
Table 1. Industrial analysis and elemental analysis of dry coal (mass fraction)
% Sample Mad Aad Vad FCad ST,C SRaw, O, C SRaw, I, C Air-dried raw coal 2.79 4.64 39.37 53.20 2.19 1.29 0.9 表 2 同一反應時間煤中的硫含量和光催化煤脫硫率
Table 2. Sulfur content in coal and photocatalytic coal desulfurization rate at the same reaction time
Items Sample The mass ratio of each component in the sample ST, C/% DR, O, C/% DR, I, C/% DS /% 1# Raw coal 2.19 2# Raw coal–[HO2MMim][HSO4]–H2O2
(Avoid light)3∶1∶10 1.87 6.20 26.67 14.61 3# Raw coal–[HO2MMim][HSO4]–H2O2 3∶1∶10 1.82 6.98 31.11 16.89 4# Raw coal–[HO2MMim][HSO4]–H2O2–TiO2 3∶1∶10∶4 1.68 10.08 42.22 23.29 3∶5∶10∶4 1.86 12.40 18.89 15.07 3∶10∶10∶4 1.9 9.30 18.89 13.24 5# Raw coal–[HO2MMim][HSO4]–H2O–TiO2 3∶5∶10∶4 1.97 11.63 8.89 10.50 6# Raw coal–H2O2–TiO2 (light time 3 h) 3∶10∶4 2.03 6.98 7.78 7.31 Raw coal–H2O2–TiO2 1.84 10.85 23.33 15.98 Raw coal–H2O2–TiO2 (light time 9 h) 1.85 6.20 28.89 15.53 7# Raw coal–H2O–H2O2–TiO2 3∶1∶10∶4 1.86 7.75 25.56 15.07 3∶5∶10∶4 1.91 10.85 15.56 12.79 3∶10∶10∶4 1.83 6.98 30.00 16.44 8# Raw coal–[HO2MMim][HSO4]–H2O–H2O2–TiO2 3∶5∶5∶10∶4 1.83 10.85 24.44 16.44 3∶5∶10∶10∶4 1.87 8.53 23.33 14.61 表 3 溶質在溶劑中的溶解度、化學勢、靜電能、氫鍵能和范德華力
Table 3. Solubility, chemical potential, electrostatic energy, hydrogen bond energy, and van der Waals force of solute in solvent
Solute Solvent Solubility,
Log10xChemical potential/
(kJ· mol?1)Electrostatic energy/
(kJ· mol?1)Hydrogen bond/
(kJ· mol?1)Van der Waals forces/
(kJ· mol?1)Thiophene [HO2MMim][HSO4] ?5.5490 11.8715 11.9531 0.0130 ?62.4057252 H2O2 ?9.8911 17.7725 18.0919 0 ?56.2682 Sulfone [HO2MMim][HSO4] ?1.9457 15.5087 13.7912 ?2.5133 ?72.4048 H2O2 ?8.9631 12.2277 13.8393 ?9.8744 ?64.5552 www.77susu.com -
參考文獻
[1] Francisco M, Arce A, Soto A. Ionic liquids on desulfurization of fuel oils. Fluid Phase Equilibria, 2010, 294(1-2): 39 doi: 10.1016/j.fluid.2009.12.020 [2] Vohra A, Goswami D Y, Deshpande D A, et al. Enhanced photocatalytic inactivation of bacterial spores on surfaces in air. J Ind Microbiol Biotechnol, 2005, 32(8): 364 doi: 10.1007/s10295-005-0006-y [3] Srinivasan S, Escobar D, Goswami Y, et al. Effects of catalysts doping on the thermal decomposition behavior of Zn(BH4)2. Int J Hydrog Energy, 2008, 33(9): 2268 [4] Bui T T L, Nguyen D D, Ho S V, et al. Synthesis, characterization and application of some non-halogen ionic liquids as green solvents for deep desulfurization of diesel oil. Fuel, 2017, 191: 54 doi: 10.1016/j.fuel.2016.11.044 [5] Cummings J, Shah K, Atkin R, et al. Physicochemical interactions of ionic liquids with coal; the viability of ionic liquids for pre-treatments in coal liquefaction. Fuel, 2015, 143: 244 doi: 10.1016/j.fuel.2014.11.042 [6] Zheng D, Zhu W S, Xun S H, et al. Deep oxidative desulfurization of dibenzothiophene using low-temperature-mediated titanium dioxide catalyst in ionic liquids. Fuel, 2015, 159: 446 doi: 10.1016/j.fuel.2015.06.090 [7] Jiang B, Yang H W, Zhang L H, et al. Efficient oxidative desulfurization of diesel fuel using amide-based ionic liquids. Chem Eng J, 2016, 283: 89 doi: 10.1016/j.cej.2015.07.070 [8] Kianpour E, Azizian S, Yarie M, et al. A task-specific phosphonium ionic liquid as an efficient extractant for green desulfurization of liquid fuel: An experimental and computational study. Chem Eng J, 2016, 295: 500 doi: 10.1016/j.cej.2016.03.072 [9] Kim J W, Kim D, Ra C S, et al. Synthesis of ionic liquids based on alkylimidazolium salts and their coal dissolution and dispersion properties. J Ind Eng Chem, 2014, 20(2): 372 doi: 10.1016/j.jiec.2013.04.039 [10] Safa M, Mokhtarani B, Mortaheb H R. Deep extractive desulfurization of dibenzothiophene with imidazolium or pyridinium-based ionic liquids. Chem Eng Res Des, 2016, 111: 323 doi: 10.1016/j.cherd.2016.04.021 [11] Li J, Wang J W, Wu M Y, et al. Deep deterpenation of citrus essential oils intensified by in situ formation of a deep eutectic solvent in associative extraction. Ind Eng Chem Res, 2020, 59(19): 9223 doi: 10.1021/acs.iecr.0c00442 [12] Qi Y H, Bi W Q, Wang X, et al. Progress in catalytic oxidation and desulfurization of ionic liquids technology. Petrochem Technol Appl, 2019, 37(2): 144 doi: 10.3969/j.issn.1009-0045.2019.02.016齊玉歡, 畢維強, 王旭, 等. 離子液體催化氧化脫硫技術進展. 石化技術與應用, 2019, 37(2):144 doi: 10.3969/j.issn.1009-0045.2019.02.016 [13] Wang L Y, Xu Y L, Jiang S G, et al. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal. Saf Sci, 2012, 50(7): 1528 doi: 10.1016/j.ssci.2012.03.006 [14] Saikia B K, Khound K, Sahu O P, et al. Feasibility studies on cleaning of high sulfur coals by using ionic liquids. Int J Coal Sci Technol, 2015, 2(3): 202 doi: 10.1007/s40789-015-0074-1 [15] Saikia B K, Khound K, Baruah B P. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids. Energy Convers Manag, 2014, 81: 298 doi: 10.1016/j.enconman.2014.02.043 [16] Xu Y L, Liu Y, Bu Y C, et al. Review on the ionic liquids affecting the desulfurization of coal by chemical agents. J Clean Prod, 2021, 284: 124788 doi: 10.1016/j.jclepro.2020.124788 [17] Gong X, Nie Y, Dai F. Study on hydrogenation desulfurization of thiophene under ionic liquids. Comput Appl Chem, 2013, 30(5): 451鞏學, 聶毅, 代飛. 離子液體作用下的噻吩加氫脫除機理研究. 計算機與應用化學, 2013, 30(5):451 [18] Lin S T, Sandler S I. A priori phase equilibrium prediction from a segment contribution solvation model. Ind Eng Chem Res, 2002, 41(5): 899 doi: 10.1021/ie001047w [19] Chen P. Application of XPS in study forms of organic sulfur in macerals of Yanzhou coal. J Fuel Chem Technol, 1997, 25(3): 238陳鵬. 用XPS研究兗州煤各顯微組分中有機硫存在形態. 燃料化學學報, 1997, 25(3):238 [20] Ge T, Zhang M X, Min F F. Response regularity of organic sulfur in coking coal to microwave. J China Coal Soc, 2015, 40(7): 1648葛濤, 張明旭, 閔凡飛. 煉焦煤中有機硫對微波的響應規律. 煤炭學報, 2015, 40(7):1648 [21] Ning H S. Preparation of Triethylamine Modified Titanium Dioxide Film in Normal Temperature and Its’ Photocatalytic Performance Study [Dissertation]. Hangzhou: Zhejiang University, 2008寧海水. 三乙胺改性TiO2薄膜的常溫制備及光催化性能研究[學位論文]. 杭州: 浙江大學, 2008 [22] Chen H, Zong Z M, Zhang J W, et al. Analysis of products from the oxidation of Heidaigou coal residue with H2O2 aqueous under mild condition. J China Univ Min Technol, 2008, 37(3): 347 doi: 10.3321/j.issn:1000-1964.2008.03.014陳虹, 宗志敏, 張佳偉, 等. 溫和條件下黑岱溝萃余煤的雙氧水氧化產物分析. 中國礦業大學學報, 2008, 37(3):347 doi: 10.3321/j.issn:1000-1964.2008.03.014 [23] Cui Y M, Han J X. Current status of research and prospect on photocatalytic degradation of organic pollutants in water. J Fuel Chem Technol, 2004, 32(1): 123 doi: 10.3969/j.issn.0253-2409.2004.01.025崔玉民, 韓金霞. 光催化降解水中有機污染物研究現狀與展望. 燃料化學學報, 2004, 32(1):123 doi: 10.3969/j.issn.0253-2409.2004.01.025 [24] Xu G L, Lü W J, Liu Y F, et al. Effect of external electric field on the optical excitation of silicon dioxide. Acta Phys Sin, 2009, 58(5): 3058 doi: 10.3321/j.issn:1000-3290.2009.05.030徐國亮, 呂文靜, 劉玉芳, 等. 外電場作用下二氧化硅分子的光激發特性研究. 物理學報, 2009, 58(5):3058 doi: 10.3321/j.issn:1000-3290.2009.05.030 [25] Zhu W S, Wang C, Li H P, et al. One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent. Green Chem, 2015, 17(4): 2464 doi: 10.1039/C4GC02425G [26] Sun B, Yu X, Wang L, et al. Enhanced visible light photocatalytic oxidative desulfurization by BiOBr-graphene composite. J Fuel Chem Technol, 2016, 44(9): 1074 doi: 10.1016/S1872-5813(16)30049-4 [27] Wu Y F, Gao X M, Fu F, et al. Preparation of BiVO4 photocatalyst and its performance in the oxidative desulfurization of modeling gasoline. Chem React Eng Technol, 2011, 27(1): 92 doi: 10.3969/j.issn.1001-7631.2011.01.019武玉飛, 高曉明, 付峰, 等. BiVO4光催化劑的合成及其用于模擬汽油氧化脫硫的研究. 化學反應工程與工藝, 2011, 27(1):92 doi: 10.3969/j.issn.1001-7631.2011.01.019 [28] Wu P W, Xun S H, Jiang W, et al. Recent progress on extractive desulfurization of fuel oils through reactions based on ionic liquids as solvents and catalysts. CIESC J, 2021, 72(1): 276吳沛文, 荀蘇杭, 蔣偉, 等. 離子液體反應型萃取燃油脫硫研究進展. 化工學報, 2021, 72(1):276 [29] Yang N N, Wang Q, Zang S L, et al. Application progress of ionic liquids in extraction desulfurization. Contemp Chem Ind, 2016, 45(12): 2859 doi: 10.3969/j.issn.1671-0460.2016.12.052楊楠楠, 王強, 臧樹良, 等. 離子液體在萃取脫硫研究中的應用進展. 當代化工, 2016, 45(12):2859 doi: 10.3969/j.issn.1671-0460.2016.12.052 [30] Wang L Y, Jin G S, Xu Y L. Desulfurization of coal using four ionic liquids with [HSO4]?. Fuel, 2019, 236: 1181 doi: 10.1016/j.fuel.2018.09.082 [31] Aihara J I. Reduced HOMO–LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A, 1999, 103(37): 7487 doi: 10.1021/jp990092i [32] Islam M R, Chen C C. COSMO-SAC sigma profile generation with conceptual segment concept. Ind Eng Chem Res, 2015, 54(16): 4441 doi: 10.1021/ie503829b [33] Klamt A, Eckert F. COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilibria, 2000, 172(1): 43 doi: 10.1016/S0378-3812(00)00357-5 [34] Eckert F, Klamt A. Fast solvent screening via quantum chemistry: COSMO-RS approach. Aiche J, 2002, 48(2): 369 doi: 10.1002/aic.690480220 -