<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種描述磁流變彈性體滯回特性的分數階導數改進Bouc?Wen模型

王鵬 楊紹普 劉永強 趙義偉 王翠艷

王鵬, 楊紹普, 劉永強, 趙義偉, 王翠艷. 一種描述磁流變彈性體滯回特性的分數階導數改進Bouc?Wen模型[J]. 工程科學學報, 2022, 44(3): 389-401. doi: 10.13374/j.issn2095-9389.2021.06.23.002
引用本文: 王鵬, 楊紹普, 劉永強, 趙義偉, 王翠艷. 一種描述磁流變彈性體滯回特性的分數階導數改進Bouc?Wen模型[J]. 工程科學學報, 2022, 44(3): 389-401. doi: 10.13374/j.issn2095-9389.2021.06.23.002
WANG Peng, YANG Shao-pu, LIU Yong-qiang, ZHAO Yi-wei, WANG Cui-yan. Modified Bouc?Wen model based on a fractional derivative for describing the hysteretic characteristics of magnetorheological elastomers[J]. Chinese Journal of Engineering, 2022, 44(3): 389-401. doi: 10.13374/j.issn2095-9389.2021.06.23.002
Citation: WANG Peng, YANG Shao-pu, LIU Yong-qiang, ZHAO Yi-wei, WANG Cui-yan. Modified Bouc?Wen model based on a fractional derivative for describing the hysteretic characteristics of magnetorheological elastomers[J]. Chinese Journal of Engineering, 2022, 44(3): 389-401. doi: 10.13374/j.issn2095-9389.2021.06.23.002

一種描述磁流變彈性體滯回特性的分數階導數改進Bouc?Wen模型

doi: 10.13374/j.issn2095-9389.2021.06.23.002
基金項目: 國家重點研發計劃資助項目(2020YFB2007700);國家自然科學基金資助項目(11790282,12172235, 12072208, 52072249);石家莊鐵道大學國家重點實驗室開放基金資助項目(ZZ2021-13);河北省研究生創新資助項目(CXZZBS2021112);河北省教育廳科學技術青年基金資助項目(QN2018237)
詳細信息
    通訊作者:

    E-mail: yangsp@stdu.edu.cn

  • 中圖分類號: TB381

Modified Bouc?Wen model based on a fractional derivative for describing the hysteretic characteristics of magnetorheological elastomers

More Information
  • 摘要: 為了準確表征大范圍應變幅值、激勵頻率和磁場下磁流變彈性體(Magnetorheological elastomer, MRE)的力學行為,本文引入黏彈性分數階導數,提出一種描述磁流變彈性體滯回特性的分數階導數改進Bouc?Wen模型。分析了各向同性與異性MRE的微觀形貌特征,對MRE進行了性能試驗,研究發現,MRE的儲能和損耗模量隨著應變幅值(0~100%)增大先不變后減小,隨著頻率(0~100 Hz)增大而增大,隨著磁場(0~545 mT)增大而增大。在此基礎上,基于分數階導數提出改進Bouc?Wen模型,在Simulink軟件中建立仿真模型,利用Oustaloup濾波器算法對分數階導數項近似計算,對比分析驗證了改進模型的有效性,各工況下仿真數據和試驗數據的吻合度均高于98%。結果表明:改進Bouc?Wen模型能準確地模擬MRE應力應變滯回曲線,擬合精度較Bouc?Wen模型明顯提升,改進模型在較寬的應變幅值、頻率和磁場范圍內是準確有效的,為實現MRE的工程應用打下基礎。

     

  • 圖  1  MRE制備實驗流程

    Figure  1.  Experimental process of MRE preparation

    圖  2  MRE的截面形貌。(a)CIP60%各向同性;(b)CIP80%各向同性;(c)CIP60%各向異性;(d)CIP80%各向異性

    Figure  2.  Cross section of MRE: (a) CIP60% isotropic; (b) CIP80% isotropic; (c) CIP60% anisotropic; (d) CIP80% anisotropy

    圖  3  (a,b)旋轉流變儀;(c)MRE試件;(d)測試示意圖

    Figure  3.  (a, b) Rotary rheometer; (c) MRE specimen; (d) schematic of the measuring system

    圖  4  MRE的儲能和損耗模量隨應變幅值的變化曲線。(a)儲能模量;(b)損耗模量

    Figure  4.  Storage modulus (a) and loss modulus (b) curves of MRE with strain amplitude

    圖  5  MRE的儲能和損耗模量隨應變頻率的變化曲線。(a)CIP80%各向同性;(b)CIP80%各向異性;(c)CIP60%各向同性;(d)CIP60%各向異性

    Figure  5.  Storage and loss modulus curves of MRE with strain frequency: (a) CIP80% isotropic; (b) CIP80% anisotropic; (c) CIP60% isotropic; (d) CIP60% anisotropic

    圖  6  MRE儲能和損耗模量隨磁感應強度的變化曲線。(a)儲能模量;(b)損耗模量

    Figure  6.  Storage modulus (a) and loss modulus (b) of MRE with magnetic flux density

    圖  7  改進Bouc?Wen模型

    Figure  7.  Modified Bouc?Wen model

    圖  8  頻率響應曲線。(a)幅頻;(b)相頻

    Figure  8.  Frequency response curves: (a) amplitude-frequency; (b) phase-frequency

    圖  9  Simulink建立的改進Bouc?Wen模型

    Figure  9.  Modified Bouc?Wen model in Simulink

    圖  10  基于GA?PSO算法的參數識別流程圖

    Figure  10.  Parameter identification based on GA?PSO algorithm

    圖  11  不同幅值下的仿真與試驗數據對比。(a, b)Bouc?Wen模型;(c, d) 改進Bouc?Wen模型

    Figure  11.  Comparison of simulation and experimental data under different amplitudes: (a, b) Bouc?Wen model; (c, d) modified Bouc?Wen model

    圖  12  不同頻率下的仿真與試驗數據對比。(a)Bouc?Wen模型;(b)改進Bouc?Wen模型

    Figure  12.  Comparison of simulation and test data under different frequencies: (a) Bouc?Wen model; (b) modified Bouc?Wen model

    圖  13  不同磁場下的仿真與試驗數據對比。(a)Bouc?Wen模型;(b)改進Bouc?Wen模型

    Figure  13.  Comparison of simulation and test data under different magnetic flux densities: (a) Bouc?Wen model; (b) modified Bouc?Wen model

    圖  14  各參數的變化趨勢。(a~h)不同應變幅值下;(i~p)不同磁感應強度下

    Figure  14.  Change trends of parameters under different strain amplitudes (a?h) and under different magnetic flux densities (i?p)

    表  1  MRE的成分配比

    Table  1.   Composition of MRE g

    Coumarone resinSAZnOCZRD4010NASNRCIP
    12150.5323100190
    12150.5323100506
    下載: 導出CSV

    表  2  Bouc?Wen模型識別結果及吻合率

    Table  2.   Identified values and fitness values of the Bouc?Wen model

    B/ mTf/Hzxm/%fitness valueskcαAγβn
    011.360.97306.11065.98040.531039.977311.34932.35700.7731
    012.510.96814.40453.57730.613754.496617.06113.09670.5451
    014.640.95652.62803.00000.659574.988112.52622.24140.9174
    018.570.94671.86392.66860.469945.563711.52981.39590.5629
    0115.80.93972.77761.00000.627854.000012.87554.73500.8254
    0129.30.94301.00000.11390.302972.00008.05250.57361.1378
    4050.50.400.95549.839317.05040.105457.198515.12421.74200.1000
    40510.400.941911.267315.00000.422873.657314.60132.65260.5289
    40530.400.97657.90628.37590.003873.81959.98514.64200.8466
    40550.400.974111.76034.83260.086459.966611.58871.52880.3563
    11512.510.94614.45215.93090.415146.332612.51412.07461.3497
    23412.510.94094.74439.00000.483870.000013.49641.86491.3741
    40512.510.93866.430413.73960.606480.00006.66301.20851.3839
    45612.510.93446.24379.16390.350570.000018.70925.63840.6457
    54512.510.93806.008410.33660.264066.878316.88241.06501.2103
    下載: 導出CSV

    表  3  改進Bouc?Wen模型識別結果及吻合率

    Table  3.   Identified values and fitness values of the modified Bouc?Wen model

    B/ mTf/Hzxm/%fitness valueskcαAγβnp
    011.360.98316.78644.97310.462432.585811.88521.72760.48471.0000
    012.510.99049.208222.84620.656119.240320.67691.00230.50000.3334
    014.640.992813.071618.92480.616710.262518.80492.77320.56840.3270
    018.570.98849.859112.78180.37598.146211.43495.15250.50000.3984
    0115.80.98878.33774.02870.725418.035919.74561.85121.19930.6228
    0129.30.98022.51021.36080.344027.36398.90862.06801.34680.6513
    4050.50.400.992419.017534.06500.623661.415121.08881.08650.71051.0000
    40510.400.991819.818122.68080.538049.351219.7232.58150.66000.9000
    40530.400.995518.250824.43900.506652.49922.35422.66331.25120.7043
    40550.400.995711.854122.79240.370669.47894.57703.42701.49160.6600
    11512.510.98816.289017.29220.508624.085223.44191.26590.49840.3998
    23412.510.99015.738122.59960.309226.592319.73453.16400.37080.4425
    40512.510.98558.051619.93490.328747.766520.90865.16090.42340.6927
    45612.510.99418.786921.49340.569731.341619.09640.58670.45290.6205
    54512.510.99388.185321.47850.581742.240619.06613.89370.41250.6129
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Dong X F, Ma N, Qi M, et al. The pressure-dependent MR effect of magnetorheological elastomers. Smart Mater Struct, 2012, 21(7): 075014 doi: 10.1088/0964-1726/21/7/075014
    [2] Ahamed R, Choi S B, Ferdaus M M. A state of art on magneto-rheological materials and their potential applications. J Intell Mater Syst Struct, 2018, 29(10): 2051 doi: 10.1177/1045389X18754350
    [3] An J S, Kwon S H, Choi H J, et al. Modified silane-coated carbonyl iron/natural rubber composite elastomer and its magnetorheological performance. Compos Struct, 2017, 160: 1020 doi: 10.1016/j.compstruct.2016.10.128
    [4] Tong Y, Dong X F, Qi M. Improved tunable range of the field-induced storage modulus by using flower-like particles as the active phase of magnetorheological elastomers. Soft Matter, 2018, 14(18): 3504 doi: 10.1039/C8SM00359A
    [5] Jolly M R, Carlson J D, Mu?oz B C. A model of the behaviour of magnetorheological materials. Smart Mater Struct, 1996, 5(5): 607 doi: 10.1088/0964-1726/5/5/009
    [6] Davis L C. Model of magnetorheological elastomers. J Appl Phys, 1999, 85(6): 3348 doi: 10.1063/1.369682
    [7] Chen L, Gong X L, Li W H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers. Smart Mater Struct, 2007, 16(6): 2645 doi: 10.1088/0964-1726/16/6/069
    [8] Zhang X Z, Peng S L, Wen W J, et al. Analysis and fabrication of patterned magnetorheological elastomers. Smart Mater Struct, 2008, 17(4): 045001 doi: 10.1088/0964-1726/17/4/045001
    [9] Wang B C, Kari L. A visco-elastic-plastic constitutive model of isotropic magneto-sensitive rubber with amplitude, frequency and magnetic dependency. Int J Plast, 2020, 132: 102756 doi: 10.1016/j.ijplas.2020.102756
    [10] Li W H, Zhou Y, Tian T F. Viscoelastic properties of MR elastomers under harmonic loading. Rheol Acta, 2010, 49(7): 733 doi: 10.1007/s00397-010-0446-9
    [11] Kari L, Blom P. Magneto-sensitive rubber in a noise reduction context: Exploring the potential. Plast Rubber Compos, 2005, 34(8): 365 doi: 10.1179/174328905X59692
    [12] Chen L, Jerrams S. A rheological model of the dynamic behavior of magnetorheological elastomers. J Appl Phys, 2011, 110(1): 013513 doi: 10.1063/1.3603052
    [13] Blom P, Kari L. A nonlinear constitutive audio frequency magneto-sensitive rubber model including amplitude, frequency and magnetic field dependence. J Sound Vib, 2011, 330(5): 947 doi: 10.1016/j.jsv.2010.09.010
    [14] Xu Z D, Xu C, Hu J. Equivalent fractional Kelvin model and experimental study on viscoelastic damper. J Vib Control, 2015, 21(13): 2536 doi: 10.1177/1077546313513604
    [15] Xu Z D, Shen Y P, Guo Y Q. Semi-active control of structures incorporated with magnetorheological dampers using neural networks. Smart Mater Struct, 2003, 12(1): 80 doi: 10.1088/0964-1726/12/1/309
    [16] Behrooz M, Wang X J, Gordaninejad F. Modeling of a new semi-active/passive magnetorheological elastomer isolator. Smart Mater Struct, 2014, 23(4): 045013 doi: 10.1088/0964-1726/23/4/045013
    [17] Xu Z D, Suo S, Zhu J T, et al. Performance tests and modeling on high damping magnetorheological elastomers based on bromobutyl rubber. J Intell Mater Syst Struct, 2018, 29(6): 1025 doi: 10.1177/1045389X17730909
    [18] Wang B C, Kari L. A nonlinear constitutive model by spring, fractional derivative and modified bounding surface model to represent the amplitude, frequency and the magnetic dependency for Magneto-sensitive rubber. J Sound Vib, 2019, 438: 344 doi: 10.1016/j.jsv.2018.09.028
    [19] Kong F, Hou Z X, Xu J, et al. Steady-state response determination of a hysteretic system endowed with fractional elements via a multi-harmonic balance method. J Vib Eng, 2021, 34(3): 552

    孔凡, 侯召旭, 徐軍, 等. 基于多諧波平衡法的滯回分數階系統穩態動力響應. 振動工程學報, 2021, 34(3):552
    [20] Wang B C, Kari L. Modeling and vibration control of a smart vibration isolation system based on magneto-sensitive rubber. Smart Mater Struct, 2019, 28(6): 065026 doi: 10.1088/1361-665X/ab1ab4
    [21] Dominguez A, Sedaghati R, Stiharu I. Modelling the hysteresis phenomenon of magnetorheological dampers. Smart Mater Struct, 2004, 13(6): 1351 doi: 10.1088/0964-1726/13/6/008
    [22] Yang J, Du H P, Li W H, et al. Experimental study and modeling of a novel magnetorheological elastomer isolator. Smart Mater Struct, 2013, 22(11): 117001 doi: 10.1088/0964-1726/22/11/117001
    [23] Zhao Y W, Liu Y Q, Yang S P, et al. An improved Bouc-Wen model for describing hysteretic characteristics of shock absorbers. Chin J Eng, 2020, 42(10): 10

    趙義偉, 劉永強, 楊紹普, 等. 一種描述減振器滯回特性的Bouc?Wen改進模型. 工程科學學報, 2020, 42(10):10
    [24] Xu Z D, Li A Q, Cheng W R, et al. A temperature phenomenological model with mass element of magnetorheological damper. Eng Mech, 2005, 22(2): 144 doi: 10.3969/j.issn.1000-4750.2005.02.026

    徐趙東, 李愛群, 程文瀼, 等. 磁流變阻尼器帶質量元素的溫度唯象模型. 工程力學, 2005, 22(2):144 doi: 10.3969/j.issn.1000-4750.2005.02.026
    [25] Wang Q, Dong X F, Li L Y, et al. A nonlinear model of magnetorheological elastomer with wide amplitude range and variable frequencies. Smart Mater Struct, 2017, 26(6): 065010 doi: 10.1088/1361-665X/aa66e3
    [26] Chang Y J, Tian W W, Chen E L, et al. Dynamic model for the nonlinear hysteresis of metal rubber based on the fractional-order derivative. J Vib Shock, 2020, 39(14): 233

    常宇健, 田沃沃, 陳恩利, 等. 基于分數階微分的金屬橡膠遲滯非線性動力學模型. 振動與沖擊, 2020, 39(14):233
    [27] You H, Shen Y J, Xing H J, et al. Optimal control and parameters design for the fractional-order vehicle suspension system. J Low Freq Noise Vib Active Control, 2018, 37(3): 456 doi: 10.1177/0263092317717166
    [28] Xue D Y, Zhao C N, Chen Y Q. A modified approximation method of fractional order system // 2006 International Conference on Mechatronics and Automation. Luoyang, 2006: 1043
    [29] Liu Y Y, Dai J J, Zhao S S, et al. Optimization of five-parameter BRDF model based on hybrid GA-PSO algorithm. Optik, 2020, 219: 164978 doi: 10.1016/j.ijleo.2020.164978
    [30] Liu Y Q, Yang S P, Liao Y Y. A new method of parameters identification for magnetorheological damper model. J Mech Eng, 2018, 54(6): 62 doi: 10.3901/JME.2018.06.062

    劉永強, 楊紹普, 廖英英. 一種磁流變阻尼器模型參數識別新方法. 機械工程學報, 2018, 54(6):62 doi: 10.3901/JME.2018.06.062
  • 加載中
圖(14) / 表(3)
計量
  • 文章訪問數:  622
  • HTML全文瀏覽量:  337
  • PDF下載量:  59
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-06-23
  • 網絡出版日期:  2021-09-18
  • 刊出日期:  2022-01-08

目錄

    /

    返回文章
    返回