Fracture dynamic evolution features of a coal-containing gas based on gray level co-occurrence matrix and industrial CT scanning
-
摘要: 為研究受載含瓦斯煤在三軸壓縮作用下的裂隙演化規律,利用受載含瓦斯煤顯微工業CT掃描系統,開展了三軸加載條件下受載含瓦斯煤的工業CT掃描測試,獲取了受載含瓦斯煤的應力?應變曲線和各變形階段的CT掃描圖形。運用圖像分析軟件對CT掃描數據進行了三維數字重建,實現了煤樣內部裂隙的三維可視化和定量表征,并基于灰度共生矩陣(GLCM)理論分析了受載含瓦斯煤的裂隙動態擴展特征及規律。研究結果表明:瓦斯壓力的存在一定程度上弱化了受載含瓦斯煤的力學性質,同時也加速了裂隙的擴展;受載含瓦斯煤二維裂隙先閉合后擴展,峰后快速擴展并形成連通二維裂隙網絡;三維裂隙體積和裂隙密度呈現出先減小后增大的變化趨勢,總體上可劃分為裂隙壓密閉合、新裂隙萌生擴展和主裂隙加速擴展貫通3個變化階段;灰度共生矩陣分析中,對比度先減小后增大,能量和同質性先增大后減小,相關性呈現出單調遞減趨勢,準確描述了受載含瓦斯煤內部裂隙隨應力增加不斷變化的總體發展規律。Abstract: The expansion evolution law of internal fractures of coal under external load is of great significance to coalbed methane production and to control coal and gas outburst disasters. The coal body is in a three-dimensional (3D) stress state under the action of original in-situ stress. It is necessary to study the fracture evolution law of a loaded coal-containing gas under triaxial compression. The industrial computed tomographic (CT) scanning test of a loaded coal-containing gas under triaxial loading was carried out using the industrial micro-CT scanning system for the loaded coal-containing gas. The CT images and stress–strain curves of coal samples were obtained at each deformation stage. The 3D digital reconstruction of CT scanning data was carried out using image analysis software. Next, 3D visualization and quantitative characterization of coal sample internal fractures were realized. Based on the gray level co-occurrence matrix (GLCM) theory, the fracture dynamic expansion characteristics and laws of the loaded coal-containing gas were analyzed. The results show that the existence of gas pressure weakens the mechanical properties of the loaded coal-containing gas and accelerates the expansion of cracks. The two-dimensional fractures of the loaded coal-containing gas first close and then expand, and then expand rapidly after the peak, forming a connected two-dimensional fracture network. The 3D fracture volume and fracture density first show a decreasing and then an increasing trend, which can be divided into three stages: fracture compaction and closure, new fracture initiation and expansion, and main fracture accelerated expansion and penetration. In the GLCM analysis, the contrast first decreases and then increases, the energy and homogeneity first increase and then decrease, and the correlation presents a monotonic decreasing trend. The analysis results accurately describe the overall development law of the internal cracks of the loaded coal-containing gas changing with stress increase.
-
圖 9 參考像素和相鄰像素之間的空間表示. (a)
$ \theta =\text{0°/180°} $ ; (b)$ \theta =\text{45°/225°} $ ; (c)$ \theta =\text{90°/270°} $ ; (d)$ \theta =\text{135°/315°} $ Figure 9. Spatial representation between a reference pixel and a neighboring pixel: (a)
$ \theta =\text{0°/180°} $ ; (b)$ \theta =\text{45°/225°} $ ; (c)$ \theta =\text{90°/270°} $ ; (d)$ \theta =\text{135°/315°} $ 表 1 受載煤樣CT掃描參數
Table 1. Computed tomography scanning parameters of loaded coal samples
Sample Voltage/kV Current/μA Number of images Scan time/min S1 180 240 1500 34 S2 180 240 1500 34 S3 180 240 1500 34 表 2 受載煤樣CT掃描狀態
Table 2. Computed tomography scanning statuses of the loaded coal samples
Sample Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 Scan 6 S1 Initial stage Elasticity stage Elasticity stage Strain hardening stage Post-peak stage Post-peak stage S2 Initial stage Elasticity stage Strain hardening stage Post-peak stage Post-peak stage Post-peak stage S3 Initial stage Elasticity stage Strain hardening stage Post-peak stage Post-peak stage Post-peak stage 表 3 受載煤樣裂隙的動態演化
Table 3. Dynamic evolution of loaded coal sample fractures
Scan stage S1 S2 S3 Fracture volume/mm3 Fracture surface area/mm2 Fracture density/mm?1 Fracture volume/mm3 Fracture surface area/mm2 Fracture density/mm?1 Fracture volume/mm3 Fracture surface area/mm2 Fracture density/mm?1 1 10.05 611.77 0.0249 8.92 593.51 0.0242 0.32 24.70 0.0010 2 0 0 0 0.84 40.93 0.0017 0.10 4.17 0.0002 3 0 0 0 18.92 1047.6 0.0427 158.90 7719.77 0.3145 4 33.73 1638.87 0.0668 91.97 4545.59 0.1852 272.98 11058.98 0.4506 5 98.04 4380.83 0.1785 284.17 11608.3 0.4729 350.08 12290.41 0.5008 6 247.15 8484.38 0.3457 537.98 22752.1 0.9270 1114.52 37969.49 1.5470 www.77susu.com -
參考文獻
[1] Hou Z M, Xie H P, Zhou H W, et al. Unconventional gas resources in China. Environ Earth Sci, 2015, 73(10): 5785 doi: 10.1007/s12665-015-4393-8 [2] Li S, Tang D Z, Pan Z J, et al. Evaluation of coalbed methane potential of different reservoirs in western Guizhou and eastern Yunnan, China. Fuel, 2015, 139: 257 doi: 10.1016/j.fuel.2014.08.054 [3] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions. Fuel, 1999, 78(11): 1333 [4] Wang D K, Lü R, Wei J P, et al. An experimental study of seepage properties of gas-saturated coal under different loading conditions. Energy Sci Eng, 2019, 7(3): 799 doi: 10.1002/ese3.309 [5] Wang D K, Lü R, Wei J P, et al. An experimental study of the anisotropic permeability rule of coal containing gas. J Nat Gas Sci Eng, 2018, 53: 67 doi: 10.1016/j.jngse.2018.02.026 [6] Zhou S D, Liu D M, Cai Y D, et al. Multi-scale fractal characterizations of lignite, subbituminous and high-volatile bituminous coals pores by mercury intrusion porosimetry. J Nat Gas Sci Eng, 2017, 44: 338 doi: 10.1016/j.jngse.2017.04.021 [7] Li H Y, Ogawa Y, Shimada S. Mechanism of methane flow through sheared coals and its role on methane recovery. Fuel, 2003, 82(10): 1271 doi: 10.1016/S0016-2361(03)00020-6 [8] Zhao J L, Xu H, Tang D Z, et al. Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng Block, eastern margin, Ordos Basin, China. Int J Coal Geol, 2016, 159: 18 doi: 10.1016/j.coal.2016.03.019 [9] Qi L L, Tang X, Wang Z F, et al. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int J Min Sci Technol, 2017, 27(2): 371 doi: 10.1016/j.ijmst.2017.01.005 [10] Ni X M, Chen W X, Li Z Y, et al. Reconstruction of different scales of pore-fractures network of coal reservoir and its permeability prediction with Monte Carlo method. Int J Min Sci Technol, 2017, 27(4): 693 doi: 10.1016/j.ijmst.2017.05.021 [11] Giffin S, Littke R, Klaver J, et al. Application of BIB-SEM technology to characterize macropore morphology in coal. Int J Coal Geol, 2013, 114: 85 doi: 10.1016/j.coal.2013.02.009 [12] Zhao Y X, Sun Y F, Liu S M, et al. Pore structure characterization of coal by NMR cryoporometry. Fuel, 2017, 190: 359 doi: 10.1016/j.fuel.2016.10.121 [13] Sun C R, Tang S H, Zhang S H, et al. Nanopore characteristics of Late Paleozoic transitional facies coal-bearing shale in Ningwu basin, China investigated by nuclear magnetic resonance and low-pressure nitrogen adsorption. J Nanosci Nanotechnol, 2017, 17(9): 6433 doi: 10.1166/jnn.2017.14477 [14] Zhao Y X, Zhu G P, Dong Y H, et al. Comparison of low-field NMR and microfocus X-ray computed tomography in fractal characterization of pores in artificial cores. Fuel, 2017, 210: 217 doi: 10.1016/j.fuel.2017.08.068 [15] Zhao Y X, Sun Y F, Liu S M, et al. Pore structure characterization of coal by synchrotron radiation nano-CT. Fuel, 2018, 215: 102 doi: 10.1016/j.fuel.2017.11.014 [16] Wang D K, Zhang P, Pu H, et al. Experimental research on crack evolution of coal under temperature impact based on industrial Micro-CT. Chin J Rock Mech Eng, 2018, 37(10): 2243王登科, 張平, 浦海, 等. 溫度沖擊下煤體裂隙結構演化的顯微CT實驗研究. 巖石力學與工程學報, 2018, 37(10):2243 [17] Zhang H T, Wang D K, Yu C, et al. Microcrack evolution and permeability enhancement due to thermal shocks in coal. PLoS One, 2020, 15(5): e0232182 doi: 10.1371/journal.pone.0232182 [18] Chen Y L, Zuo J P, Liu D J, et al. Deformation failure characteristics of coal-rock combined body under uniaxial compression: Experimental and numerical investigations. Bull Eng Geol Environ, 2019, 78(5): 3449 doi: 10.1007/s10064-018-1336-0 [19] Kong X G, Wang E Y, Hu S B, et al. Fractal characteristics and acoustic emission of coal containing methane in triaxial compression failure. J Appl Geophys, 2016, 124: 139 doi: 10.1016/j.jappgeo.2015.11.018 [20] Cai Y D, Liu D M, Mathews J P, et al. Permeability evolution in fractured coal: Combining triaxial confinement with X-ray computed tomography, acoustic emission and ultrasonic techniques. Int J Coal Geol, 2014, 122: 91 doi: 10.1016/j.coal.2013.12.012 [21] Fu H J, Tang D Z, Xu T, et al. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel, 2017, 193: 254 doi: 10.1016/j.fuel.2016.11.069 [22] Cai Y D, Liu D M, Pan Z J, et al. Investigating the effects of seepage-pores and fractures on coal permeability by fractal analysis. Transp Porous Media, 2016, 111(2): 479 doi: 10.1007/s11242-015-0605-7 [23] Pan J N, Wang K, Hou Q L, et al. Micro-pores and fractures of coals analysed by field emission scanning electron microscopy and fractal theory. Fuel, 2016, 164: 277 doi: 10.1016/j.fuel.2015.10.011 [24] Klobes P, Riesemeier H, Meyer K, et al. Rock porosity determination by combination of X-ray computerized tomography with mercury porosimetry. Fresenius' J Anal Chem, 1997, 357(5): 543 doi: 10.1007/s002160050210 [25] Sui L L, Yu J, Cang D B, et al. The fractal description model of rock fracture networks characterization. Chaos Solitons Fractals, 2019, 129: 71 doi: 10.1016/j.chaos.2019.07.055 [26] Liu S M, Wang D K, Yin G Z, et al. Experimental study on the microstructure evolution laws in coal seam affected by temperature impact. Rock Mech Rock Eng, 2020, 53(3): 1359 doi: 10.1007/s00603-019-01978-3 [27] Tao K, Zheng W. Real-time damage assessment of hydrous sandstone based on synergism of AE-CT techniques. Eng Fail Anal, 2018, 91: 465 doi: 10.1016/j.engfailanal.2018.04.046 [28] Takano D, Lenoir N, Otani J, et al. Localised deformation in a wide-grained sand under triaxial compression revealed by X-ray tomography and digital image correlation. Soils Found, 2015, 55(4): 906 doi: 10.1016/j.sandf.2015.06.020 [29] Watanabe Y, Lenoir N, Otani J, et al. Displacement in sand under triaxial compression by tracking soil particles on X-ray CT data. Soils Found, 2012, 52(2): 312 doi: 10.1016/j.sandf.2012.02.008 [30] Tao S, Pan Z J, Chen S D, et al. Coal seam porosity and fracture heterogeneity of marcolithotypes in the Fanzhuang Block, southern Qinshui Basin, China. J Nat Gas Sci Eng, 2019, 66: 148 doi: 10.1016/j.jngse.2019.03.030 [31] Wang Z Z, Pan J N, Hou Q L, et al. Anisotropic characteristics of low-rank coal fractures in the Fukang mining area, China. Fuel, 2018, 211: 182 doi: 10.1016/j.fuel.2017.09.067 [32] Wang D K, Zhang P, Wei J P, et al. Research on dynamic evolution of 3D fracture structure of loaded coal body based on CT visualization. J China Coal Soc, 2019, 44(Suppl 2): 574王登科, 張平, 魏建平, 等. CT可視化的受載煤體三維裂隙結構動態演化試驗研究. 煤炭學報, 2019, 44(增刊2): 574 [33] Yao Y B, Liu D M, Che Y, et al. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography. Int J Coal Geol, 2009, 80(2): 113 doi: 10.1016/j.coal.2009.08.001 [34] Feng Z J, Zhao Y S. Pyrolytic cracking in coal: Meso-characteristics of pore and fissure evolution observed by micro-CT. J China Coal Soc, 2015, 40(1): 103馮子軍, 趙陽升. 煤的熱解破裂過程—孔裂隙演化的顯微CT細觀特征. 煤炭學報, 2015, 40(1):103 [35] Wang D K, Zhang P, Liu S M, et al. Experimental study on evolutionary characteristics of pore-fissure structure in coal seam under temperature impact. J China Coal Soc, 2018, 43(12): 3395王登科, 張平, 劉淑敏, 等. 溫度沖擊下煤層內部孔縫結構演化特征實驗研究. 煤炭學報, 2018, 43(12):3395 [36] Wang D K, Zhang P, Wei J P, et al. The seepage properties and permeability enhancement mechanism in coal under temperature shocks during unloading confining pressures. J Nat Gas Sci Eng, 2020, 77: 103242 doi: 10.1016/j.jngse.2020.103242 [37] Wang G, Shen J N, Liu S M, et al. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory. Int J Rock Mech Min Sci, 2019, 123: 104082 doi: 10.1016/j.ijrmms.2019.104082 [38] Mao L T, Lian X Y, Hao N, et al. 3D strain measurement in coal using digital volumetric speckle photography. J China Coal Soc, 2015, 40(1): 65毛靈濤, 連秀云, 郝耐, 等. 基于數字體散斑法煤樣內部三維應變場的測量. 煤炭學報, 2015, 40(1):65 [39] Wang D K, Zeng F C, Wang J G, et al. Dynamic evolution characteristics and fractal law of loaded coal fractures by micro industrial CT. Chin J Rock Mech Eng, 2020, 39(6): 1165王登科, 曾凡超, 王建國, 等. 顯微工業CT的受載煤樣裂隙動態演化特征與分形規律研究. 巖石力學與工程學報, 2020, 39(6):1165 [40] Zhang Y H, Xu X M, Lebedev M, et al. Multi-scale X-ray computed tomography analysis of coal microstructure and permeability changes as a function of effective stress. Int J Coal Geol, 2016, 165: 149 doi: 10.1016/j.coal.2016.08.016 [41] Song H H, Zhao Y X, Jiang Y D, et al. Influence of heterogeneity on the failure characteristics of coal under uniaxial compression condition. J China Coal Soc, 2017, 42(12): 3125宋紅華, 趙毅鑫, 姜耀東, 等. 單軸受壓條件下煤巖非均質性對其破壞特征的影響. 煤炭學報, 2017, 42(12):3125 [42] Duan Y T, Li X, Ranjith P G, et al. An investigation of the evolution of the internal structures and failure modes of Longmaxi shale using novel X-ray microscopy. J Petroleum Sci Eng, 2020, 184: 106479 doi: 10.1016/j.petrol.2019.106479 [43] Zhou H W, Zhong J C, Ren W G, et al. Characterization of pore-fracture networks and their evolution at various measurement scales in coal samples using X-ray μCT and a fractal method. Int J Coal Geol, 2018, 189: 35 doi: 10.1016/j.coal.2018.02.007 [44] Hao D Y, Tu S H, Zhang C, et al. Quantitative characterization and three-dimensional reconstruction of bituminous coal fracture development under rock mechanics testing. Fuel, 2020, 267: 117280 doi: 10.1016/j.fuel.2020.117280 [45] Lu X, Armstrong R T, Mostaghimi P. High-pressure X-ray imaging to interpret coal permeability. Fuel, 2018, 226: 573 doi: 10.1016/j.fuel.2018.03.172 [46] Ju Y, Xi C D, Zhang Y, et al. Laboratory in situ CT observation of the evolution of 3D fracture networks in coal subjected to confining pressures and axial compressive loads: A novel approach. Rock Mech Rock Eng, 2018, 51(11): 3361 doi: 10.1007/s00603-018-1459-4 [47] Ju Y, Zhang Q G, Zheng J T, et al. Experimental study on CH4 permeability and its dependence on interior fracture networks of fractured coal under different excavation stress paths. Fuel, 2017, 202: 483 doi: 10.1016/j.fuel.2017.04.056 [48] Stappen J F V, Meftah R, Boone M A, et al. In situ triaxial testing to determine fracture permeability and aperture distribution for CO2 sequestration in svalbard, Norway. Environ Sci Technol, 2018, 52(8): 4546 doi: 10.1021/acs.est.8b00861 [49] Schlüter S, Sheppard A, Brown K, et al. Image processing of multiphase images obtained via X-ray microtomography: A review. Water Resour Res, 2014, 50(4): 3615 doi: 10.1002/2014WR015256 [50] Voorn M, Exner U, Rath A. Multiscale Hessian fracture filtering for the enhancement and segmentation of narrow fractures in 3D image data. Comput Geosci, 2013, 57: 44 doi: 10.1016/j.cageo.2013.03.006 [51] Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst,Man,Cybern, 1973, SMC-3(6): 610 doi: 10.1109/TSMC.1973.4309314 [52] Singh A, Armstrong R T, Regenauer-Lieb K, et al. Rock characterization using gray-level co-occurrence matrix: An objective perspective of digital rock statistics. Water Resour Res, 2019, 55(3): 1912 doi: 10.1029/2018WR023342 [53] Kabir S, Rivard P, He D C, et al. Damage assessment for concrete structure using image processing techniques on acoustic borehole imagery. Constr Build Mater, 2009, 23(10): 3166 doi: 10.1016/j.conbuildmat.2009.06.013 [54] Malegori C, Franzetti L, Guidetti R, et al. GLCM, an image analysis technique for early detection of biofilm. J Food Eng, 2016, 185: 48 doi: 10.1016/j.jfoodeng.2016.04.001 [55] Arabi P M, Joshi G, Vamsha D N. Performance evaluation of GLCM and pixel intensity matrix for skin texture analysis. Perspect Sci, 2016, 8: 203 doi: 10.1016/j.pisc.2016.03.018 [56] Tahir M. Pattern analysis of protein images from fluorescence microscopy using gray level co-occurrence matrix. J King Saud Univ Sci, 2018, 30(1): 29 doi: 10.1016/j.jksus.2016.12.004 [57] Kabir S. Imaging-based detection of AAR induced map-crack damage in concrete structure. NDT E Int, 2010, 43(6): 461 doi: 10.1016/j.ndteint.2010.04.007 [58] Xu J M, Han N N, Li Y S. Image features of localized deformation of limestone. Chin J Rock Mech Eng, 2010, 29(10): 2110徐金明, 韓娜娜, 李巖松. 石灰巖局部化變形的圖像特征. 巖石力學與工程學報, 2010, 29(10):2110 [59] Zhu L, Dang F N, Xue Y, et al. Analysis of micro-structural damage evolution of concrete through coupled X-ray computed tomography and gray-level co-occurrence matrices method. Constr Build Mater, 2019, 224: 534 doi: 10.1016/j.conbuildmat.2019.07.007 [60] Wang P H, Qiao H X, Zhang Y S, et al. Meso-damage evolution analysis of magnesium oxychloride cement concrete based on X-CT and grey-level co-occurrence matrix. Constr Build Mater, 2020, 255: 119373 doi: 10.1016/j.conbuildmat.2020.119373 [61] Sun K M, Wang J Y, Xin L W. Research on the law of secondary cracks propagation in coal and rock caused by gas wedging during supercritical CO2 explosion under different stress differences. Chin J Appl Mech, 2019, 36(2): 466孫可明, 王金彧, 辛利偉. 不同應力差條件下超臨界CO2氣爆煤巖體氣楔作用次生裂紋擴展規律研究. 應用力學學報, 2019, 36(2):466 [62] Wang H Y, Liu Y Z, Dong D Z, et al. Scientific issues on effective development of marine shale gas in Southern China. Petroleum Explor Dev, 2013, 40(5): 615 doi: 10.1016/S1876-3804(13)60080-4 [63] Ma T S, Chen P. Study of meso-damage characteristics of shale hydration based on CT scanning technology. Petroleum Explor Dev, 2014, 41(2): 249 doi: 10.1016/S1876-3804(14)60029-X [64] Cui J, Liu D M, Cai Y D, et al. Insights into fractures and minerals in subbituminous and bituminous coals by FESEM-EDS and X-ray μ-CT. Fuel, 2019, 237: 977 doi: 10.1016/j.fuel.2018.10.062 [65] Singhal B B S, Gupta R P. Applied Hydrogeology of Fractured Rocks. Dordrecht: Springer Netherlands, 2010 [66] Honeycutt C E, Plotnick R. Image analysis techniques and gray-level co-occurrence matrices (GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures. Comput Geosci, 2008, 34(11): 1461 doi: 10.1016/j.cageo.2008.01.006 [67] Lloyd K, Rosin P L, Marshall D, et al. Detecting violent and abnormal crowd activity using temporal analysis of grey level co-occurrence matrix (GLCM)-based texture measures. Mach Vis Appl, 2017, 28(3-4): 361 doi: 10.1007/s00138-017-0830-x -