<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于灰度共生矩陣和工業CT掃描的受載含瓦斯煤裂隙動態演化特征

王登科 吳巖 魏建平 趙小龍 張宏圖 朱傳奇 袁安營

王登科, 吳巖, 魏建平, 趙小龍, 張宏圖, 朱傳奇, 袁安營. 基于灰度共生矩陣和工業CT掃描的受載含瓦斯煤裂隙動態演化特征[J]. 工程科學學報, 2023, 45(1): 31-43. doi: 10.13374/j.issn2095-9389.2021.06.17.008
引用本文: 王登科, 吳巖, 魏建平, 趙小龍, 張宏圖, 朱傳奇, 袁安營. 基于灰度共生矩陣和工業CT掃描的受載含瓦斯煤裂隙動態演化特征[J]. 工程科學學報, 2023, 45(1): 31-43. doi: 10.13374/j.issn2095-9389.2021.06.17.008
WANG Deng-ke, WU Yan, WEI Jian-ping, ZHAO Xiao-long, ZHANG Hong-tu, ZHU Chuan-qi, YUAN An-ying. Fracture dynamic evolution features of a coal-containing gas based on gray level co-occurrence matrix and industrial CT scanning[J]. Chinese Journal of Engineering, 2023, 45(1): 31-43. doi: 10.13374/j.issn2095-9389.2021.06.17.008
Citation: WANG Deng-ke, WU Yan, WEI Jian-ping, ZHAO Xiao-long, ZHANG Hong-tu, ZHU Chuan-qi, YUAN An-ying. Fracture dynamic evolution features of a coal-containing gas based on gray level co-occurrence matrix and industrial CT scanning[J]. Chinese Journal of Engineering, 2023, 45(1): 31-43. doi: 10.13374/j.issn2095-9389.2021.06.17.008

基于灰度共生矩陣和工業CT掃描的受載含瓦斯煤裂隙動態演化特征

doi: 10.13374/j.issn2095-9389.2021.06.17.008
基金項目: 國家自然科學基金資助項目(52174174,51974109);河南省高等學校重點科研項目計劃基礎研究專項資助項目(21zx004);深部煤礦采動響應與災害防控國家重點實驗室開放基金資助項目(SKLMRDPC20KF06);河南理工大學創新團隊計劃資助項目(T2022-1)
詳細信息
    通訊作者:

    E-mail: weijianping@hpu.edu.cn

  • 中圖分類號: TD76

Fracture dynamic evolution features of a coal-containing gas based on gray level co-occurrence matrix and industrial CT scanning

More Information
  • 摘要: 為研究受載含瓦斯煤在三軸壓縮作用下的裂隙演化規律,利用受載含瓦斯煤顯微工業CT掃描系統,開展了三軸加載條件下受載含瓦斯煤的工業CT掃描測試,獲取了受載含瓦斯煤的應力?應變曲線和各變形階段的CT掃描圖形。運用圖像分析軟件對CT掃描數據進行了三維數字重建,實現了煤樣內部裂隙的三維可視化和定量表征,并基于灰度共生矩陣(GLCM)理論分析了受載含瓦斯煤的裂隙動態擴展特征及規律。研究結果表明:瓦斯壓力的存在一定程度上弱化了受載含瓦斯煤的力學性質,同時也加速了裂隙的擴展;受載含瓦斯煤二維裂隙先閉合后擴展,峰后快速擴展并形成連通二維裂隙網絡;三維裂隙體積和裂隙密度呈現出先減小后增大的變化趨勢,總體上可劃分為裂隙壓密閉合、新裂隙萌生擴展和主裂隙加速擴展貫通3個變化階段;灰度共生矩陣分析中,對比度先減小后增大,能量和同質性先增大后減小,相關性呈現出單調遞減趨勢,準確描述了受載含瓦斯煤內部裂隙隨應力增加不斷變化的總體發展規律。

     

  • 圖  1  試驗煤樣

    Figure  1.  Coal samples for testing

    圖  2  受載含瓦斯煤顯微工業CT掃描系統

    Figure  2.  Industrial micro-computed tomography (CT) scanning system for a loaded coal-containing gas

    圖  3  連續掃描階段的應力?應變曲線. (a) S1; (b) S2; (c) S3

    Figure  3.  Stress–strain curves at successive scanning stages: (a) S1; (b) S2; (c) S3

    圖  4  S1煤樣在不同掃描階段的CT圖像

    Figure  4.  Computed tomography images of coal sample S1 at various scanning stages

    圖  5  S2煤樣在不同掃描階段的CT圖像

    Figure  5.  Computed tomography images of coal sample S2 at various scanning stages

    圖  6  S3煤樣在不同掃描階段的CT圖像

    Figure  6.  Computed tomography images of coal sample S3 at various scanning stages

    圖  7  煤樣裂隙的三維動態演化過程

    Figure  7.  Three-dimensional fracture evolution of coal samples

    圖  8  受載煤樣裂隙體積和裂隙密度的變化曲線. (a) S1; (b) S2; (c) S3

    Figure  8.  Variation curves of fracture volumes and fracture densities of loaded coal samples: (a) S1; (b) S2; (c) S3

    圖  9  參考像素和相鄰像素之間的空間表示. (a) $ \theta =\text{0°/180°} $; (b) $ \theta =\text{45°/225°} $; (c) $ \theta =\text{90°/270°} $; (d) $ \theta =\text{135°/315°} $

    Figure  9.  Spatial representation between a reference pixel and a neighboring pixel: (a) $ \theta =\text{0°/180°} $; (b) $ \theta =\text{45°/225°} $; (c) $ \theta =\text{90°/270°} $; (d) $ \theta =\text{135°/315°} $

    圖  10  斷面位置示意圖

    Figure  10.  Schematic diagram of the section location

    圖  11  S1煤樣的GLCM統計特征曲線. (a) 對比度; (b) 能量; (c) 同質性; (d) 相關性

    Figure  11.  Curves of gray level co-occurrence matrix statistical characteristics of the S1 coal sample: (a) contrast; (b) energy; (c) homogeneity; (d) correlation  

    圖  12  S2煤樣的GLCM統計特征曲線. (a) 對比度; (b) 能量; (c) 同質性; (d) 相關性

    Figure  12.  Curves of gray level co-occurrence matrix statistical characteristics of the S2 coal sample: (a) contrast; (b) energy; (c) homogeneity; (d) correlation  

    圖  13  S3煤樣的GLCM統計特征曲線. (a) 對比度; (b) 能量; (c) 同質性; (d) 相關性

    Figure  13.  Curves of gray level co-occurrence matrix statistical characteristics of the S3 coal sample: (a) contrast; (b) energy; (c) homogeneity; (d) correlation  

    表  1  受載煤樣CT掃描參數

    Table  1.   Computed tomography scanning parameters of loaded coal samples

    SampleVoltage/kVCurrent/μANumber of imagesScan time/min
    S1180240150034
    S2180240150034
    S3180240150034
    下載: 導出CSV

    表  2  受載煤樣CT掃描狀態

    Table  2.   Computed tomography scanning statuses of the loaded coal samples

    SampleScan 1Scan 2Scan 3Scan 4Scan 5Scan 6
    S1Initial stageElasticity stageElasticity stageStrain hardening stagePost-peak stagePost-peak stage
    S2Initial stageElasticity stageStrain hardening stagePost-peak stagePost-peak stagePost-peak stage
    S3Initial stageElasticity stageStrain hardening stagePost-peak stagePost-peak stagePost-peak stage
    下載: 導出CSV

    表  3  受載煤樣裂隙的動態演化

    Table  3.   Dynamic evolution of loaded coal sample fractures

    Scan stageS1 S2 S3
    Fracture volume/mm3Fracture surface area/mm2Fracture density/mm?1Fracture volume/mm3Fracture surface area/mm2Fracture density/mm?1Fracture volume/mm3Fracture surface area/mm2Fracture density/mm?1
    110.05611.770.0249 8.92593.510.0242 0.3224.700.0010
    20000.8440.930.00170.104.170.0002
    300018.921047.60.0427158.907719.770.3145
    433.731638.870.066891.974545.590.1852272.9811058.980.4506
    598.044380.830.1785284.1711608.30.4729350.0812290.410.5008
    6247.158484.380.3457537.9822752.10.92701114.5237969.491.5470
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Hou Z M, Xie H P, Zhou H W, et al. Unconventional gas resources in China. Environ Earth Sci, 2015, 73(10): 5785 doi: 10.1007/s12665-015-4393-8
    [2] Li S, Tang D Z, Pan Z J, et al. Evaluation of coalbed methane potential of different reservoirs in western Guizhou and eastern Yunnan, China. Fuel, 2015, 139: 257 doi: 10.1016/j.fuel.2014.08.054
    [3] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions. Fuel, 1999, 78(11): 1333
    [4] Wang D K, Lü R, Wei J P, et al. An experimental study of seepage properties of gas-saturated coal under different loading conditions. Energy Sci Eng, 2019, 7(3): 799 doi: 10.1002/ese3.309
    [5] Wang D K, Lü R, Wei J P, et al. An experimental study of the anisotropic permeability rule of coal containing gas. J Nat Gas Sci Eng, 2018, 53: 67 doi: 10.1016/j.jngse.2018.02.026
    [6] Zhou S D, Liu D M, Cai Y D, et al. Multi-scale fractal characterizations of lignite, subbituminous and high-volatile bituminous coals pores by mercury intrusion porosimetry. J Nat Gas Sci Eng, 2017, 44: 338 doi: 10.1016/j.jngse.2017.04.021
    [7] Li H Y, Ogawa Y, Shimada S. Mechanism of methane flow through sheared coals and its role on methane recovery. Fuel, 2003, 82(10): 1271 doi: 10.1016/S0016-2361(03)00020-6
    [8] Zhao J L, Xu H, Tang D Z, et al. Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng Block, eastern margin, Ordos Basin, China. Int J Coal Geol, 2016, 159: 18 doi: 10.1016/j.coal.2016.03.019
    [9] Qi L L, Tang X, Wang Z F, et al. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int J Min Sci Technol, 2017, 27(2): 371 doi: 10.1016/j.ijmst.2017.01.005
    [10] Ni X M, Chen W X, Li Z Y, et al. Reconstruction of different scales of pore-fractures network of coal reservoir and its permeability prediction with Monte Carlo method. Int J Min Sci Technol, 2017, 27(4): 693 doi: 10.1016/j.ijmst.2017.05.021
    [11] Giffin S, Littke R, Klaver J, et al. Application of BIB-SEM technology to characterize macropore morphology in coal. Int J Coal Geol, 2013, 114: 85 doi: 10.1016/j.coal.2013.02.009
    [12] Zhao Y X, Sun Y F, Liu S M, et al. Pore structure characterization of coal by NMR cryoporometry. Fuel, 2017, 190: 359 doi: 10.1016/j.fuel.2016.10.121
    [13] Sun C R, Tang S H, Zhang S H, et al. Nanopore characteristics of Late Paleozoic transitional facies coal-bearing shale in Ningwu basin, China investigated by nuclear magnetic resonance and low-pressure nitrogen adsorption. J Nanosci Nanotechnol, 2017, 17(9): 6433 doi: 10.1166/jnn.2017.14477
    [14] Zhao Y X, Zhu G P, Dong Y H, et al. Comparison of low-field NMR and microfocus X-ray computed tomography in fractal characterization of pores in artificial cores. Fuel, 2017, 210: 217 doi: 10.1016/j.fuel.2017.08.068
    [15] Zhao Y X, Sun Y F, Liu S M, et al. Pore structure characterization of coal by synchrotron radiation nano-CT. Fuel, 2018, 215: 102 doi: 10.1016/j.fuel.2017.11.014
    [16] Wang D K, Zhang P, Pu H, et al. Experimental research on crack evolution of coal under temperature impact based on industrial Micro-CT. Chin J Rock Mech Eng, 2018, 37(10): 2243

    王登科, 張平, 浦海, 等. 溫度沖擊下煤體裂隙結構演化的顯微CT實驗研究. 巖石力學與工程學報, 2018, 37(10):2243
    [17] Zhang H T, Wang D K, Yu C, et al. Microcrack evolution and permeability enhancement due to thermal shocks in coal. PLoS One, 2020, 15(5): e0232182 doi: 10.1371/journal.pone.0232182
    [18] Chen Y L, Zuo J P, Liu D J, et al. Deformation failure characteristics of coal-rock combined body under uniaxial compression: Experimental and numerical investigations. Bull Eng Geol Environ, 2019, 78(5): 3449 doi: 10.1007/s10064-018-1336-0
    [19] Kong X G, Wang E Y, Hu S B, et al. Fractal characteristics and acoustic emission of coal containing methane in triaxial compression failure. J Appl Geophys, 2016, 124: 139 doi: 10.1016/j.jappgeo.2015.11.018
    [20] Cai Y D, Liu D M, Mathews J P, et al. Permeability evolution in fractured coal: Combining triaxial confinement with X-ray computed tomography, acoustic emission and ultrasonic techniques. Int J Coal Geol, 2014, 122: 91 doi: 10.1016/j.coal.2013.12.012
    [21] Fu H J, Tang D Z, Xu T, et al. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel, 2017, 193: 254 doi: 10.1016/j.fuel.2016.11.069
    [22] Cai Y D, Liu D M, Pan Z J, et al. Investigating the effects of seepage-pores and fractures on coal permeability by fractal analysis. Transp Porous Media, 2016, 111(2): 479 doi: 10.1007/s11242-015-0605-7
    [23] Pan J N, Wang K, Hou Q L, et al. Micro-pores and fractures of coals analysed by field emission scanning electron microscopy and fractal theory. Fuel, 2016, 164: 277 doi: 10.1016/j.fuel.2015.10.011
    [24] Klobes P, Riesemeier H, Meyer K, et al. Rock porosity determination by combination of X-ray computerized tomography with mercury porosimetry. Fresenius' J Anal Chem, 1997, 357(5): 543 doi: 10.1007/s002160050210
    [25] Sui L L, Yu J, Cang D B, et al. The fractal description model of rock fracture networks characterization. Chaos Solitons Fractals, 2019, 129: 71 doi: 10.1016/j.chaos.2019.07.055
    [26] Liu S M, Wang D K, Yin G Z, et al. Experimental study on the microstructure evolution laws in coal seam affected by temperature impact. Rock Mech Rock Eng, 2020, 53(3): 1359 doi: 10.1007/s00603-019-01978-3
    [27] Tao K, Zheng W. Real-time damage assessment of hydrous sandstone based on synergism of AE-CT techniques. Eng Fail Anal, 2018, 91: 465 doi: 10.1016/j.engfailanal.2018.04.046
    [28] Takano D, Lenoir N, Otani J, et al. Localised deformation in a wide-grained sand under triaxial compression revealed by X-ray tomography and digital image correlation. Soils Found, 2015, 55(4): 906 doi: 10.1016/j.sandf.2015.06.020
    [29] Watanabe Y, Lenoir N, Otani J, et al. Displacement in sand under triaxial compression by tracking soil particles on X-ray CT data. Soils Found, 2012, 52(2): 312 doi: 10.1016/j.sandf.2012.02.008
    [30] Tao S, Pan Z J, Chen S D, et al. Coal seam porosity and fracture heterogeneity of marcolithotypes in the Fanzhuang Block, southern Qinshui Basin, China. J Nat Gas Sci Eng, 2019, 66: 148 doi: 10.1016/j.jngse.2019.03.030
    [31] Wang Z Z, Pan J N, Hou Q L, et al. Anisotropic characteristics of low-rank coal fractures in the Fukang mining area, China. Fuel, 2018, 211: 182 doi: 10.1016/j.fuel.2017.09.067
    [32] Wang D K, Zhang P, Wei J P, et al. Research on dynamic evolution of 3D fracture structure of loaded coal body based on CT visualization. J China Coal Soc, 2019, 44(Suppl 2): 574

    王登科, 張平, 魏建平, 等. CT可視化的受載煤體三維裂隙結構動態演化試驗研究. 煤炭學報, 2019, 44(增刊2): 574
    [33] Yao Y B, Liu D M, Che Y, et al. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography. Int J Coal Geol, 2009, 80(2): 113 doi: 10.1016/j.coal.2009.08.001
    [34] Feng Z J, Zhao Y S. Pyrolytic cracking in coal: Meso-characteristics of pore and fissure evolution observed by micro-CT. J China Coal Soc, 2015, 40(1): 103

    馮子軍, 趙陽升. 煤的熱解破裂過程—孔裂隙演化的顯微CT細觀特征. 煤炭學報, 2015, 40(1):103
    [35] Wang D K, Zhang P, Liu S M, et al. Experimental study on evolutionary characteristics of pore-fissure structure in coal seam under temperature impact. J China Coal Soc, 2018, 43(12): 3395

    王登科, 張平, 劉淑敏, 等. 溫度沖擊下煤層內部孔縫結構演化特征實驗研究. 煤炭學報, 2018, 43(12):3395
    [36] Wang D K, Zhang P, Wei J P, et al. The seepage properties and permeability enhancement mechanism in coal under temperature shocks during unloading confining pressures. J Nat Gas Sci Eng, 2020, 77: 103242 doi: 10.1016/j.jngse.2020.103242
    [37] Wang G, Shen J N, Liu S M, et al. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory. Int J Rock Mech Min Sci, 2019, 123: 104082 doi: 10.1016/j.ijrmms.2019.104082
    [38] Mao L T, Lian X Y, Hao N, et al. 3D strain measurement in coal using digital volumetric speckle photography. J China Coal Soc, 2015, 40(1): 65

    毛靈濤, 連秀云, 郝耐, 等. 基于數字體散斑法煤樣內部三維應變場的測量. 煤炭學報, 2015, 40(1):65
    [39] Wang D K, Zeng F C, Wang J G, et al. Dynamic evolution characteristics and fractal law of loaded coal fractures by micro industrial CT. Chin J Rock Mech Eng, 2020, 39(6): 1165

    王登科, 曾凡超, 王建國, 等. 顯微工業CT的受載煤樣裂隙動態演化特征與分形規律研究. 巖石力學與工程學報, 2020, 39(6):1165
    [40] Zhang Y H, Xu X M, Lebedev M, et al. Multi-scale X-ray computed tomography analysis of coal microstructure and permeability changes as a function of effective stress. Int J Coal Geol, 2016, 165: 149 doi: 10.1016/j.coal.2016.08.016
    [41] Song H H, Zhao Y X, Jiang Y D, et al. Influence of heterogeneity on the failure characteristics of coal under uniaxial compression condition. J China Coal Soc, 2017, 42(12): 3125

    宋紅華, 趙毅鑫, 姜耀東, 等. 單軸受壓條件下煤巖非均質性對其破壞特征的影響. 煤炭學報, 2017, 42(12):3125
    [42] Duan Y T, Li X, Ranjith P G, et al. An investigation of the evolution of the internal structures and failure modes of Longmaxi shale using novel X-ray microscopy. J Petroleum Sci Eng, 2020, 184: 106479 doi: 10.1016/j.petrol.2019.106479
    [43] Zhou H W, Zhong J C, Ren W G, et al. Characterization of pore-fracture networks and their evolution at various measurement scales in coal samples using X-ray μCT and a fractal method. Int J Coal Geol, 2018, 189: 35 doi: 10.1016/j.coal.2018.02.007
    [44] Hao D Y, Tu S H, Zhang C, et al. Quantitative characterization and three-dimensional reconstruction of bituminous coal fracture development under rock mechanics testing. Fuel, 2020, 267: 117280 doi: 10.1016/j.fuel.2020.117280
    [45] Lu X, Armstrong R T, Mostaghimi P. High-pressure X-ray imaging to interpret coal permeability. Fuel, 2018, 226: 573 doi: 10.1016/j.fuel.2018.03.172
    [46] Ju Y, Xi C D, Zhang Y, et al. Laboratory in situ CT observation of the evolution of 3D fracture networks in coal subjected to confining pressures and axial compressive loads: A novel approach. Rock Mech Rock Eng, 2018, 51(11): 3361 doi: 10.1007/s00603-018-1459-4
    [47] Ju Y, Zhang Q G, Zheng J T, et al. Experimental study on CH4 permeability and its dependence on interior fracture networks of fractured coal under different excavation stress paths. Fuel, 2017, 202: 483 doi: 10.1016/j.fuel.2017.04.056
    [48] Stappen J F V, Meftah R, Boone M A, et al. In situ triaxial testing to determine fracture permeability and aperture distribution for CO2 sequestration in svalbard, Norway. Environ Sci Technol, 2018, 52(8): 4546 doi: 10.1021/acs.est.8b00861
    [49] Schlüter S, Sheppard A, Brown K, et al. Image processing of multiphase images obtained via X-ray microtomography: A review. Water Resour Res, 2014, 50(4): 3615 doi: 10.1002/2014WR015256
    [50] Voorn M, Exner U, Rath A. Multiscale Hessian fracture filtering for the enhancement and segmentation of narrow fractures in 3D image data. Comput Geosci, 2013, 57: 44 doi: 10.1016/j.cageo.2013.03.006
    [51] Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst,Man,Cybern, 1973, SMC-3(6): 610 doi: 10.1109/TSMC.1973.4309314
    [52] Singh A, Armstrong R T, Regenauer-Lieb K, et al. Rock characterization using gray-level co-occurrence matrix: An objective perspective of digital rock statistics. Water Resour Res, 2019, 55(3): 1912 doi: 10.1029/2018WR023342
    [53] Kabir S, Rivard P, He D C, et al. Damage assessment for concrete structure using image processing techniques on acoustic borehole imagery. Constr Build Mater, 2009, 23(10): 3166 doi: 10.1016/j.conbuildmat.2009.06.013
    [54] Malegori C, Franzetti L, Guidetti R, et al. GLCM, an image analysis technique for early detection of biofilm. J Food Eng, 2016, 185: 48 doi: 10.1016/j.jfoodeng.2016.04.001
    [55] Arabi P M, Joshi G, Vamsha D N. Performance evaluation of GLCM and pixel intensity matrix for skin texture analysis. Perspect Sci, 2016, 8: 203 doi: 10.1016/j.pisc.2016.03.018
    [56] Tahir M. Pattern analysis of protein images from fluorescence microscopy using gray level co-occurrence matrix. J King Saud Univ Sci, 2018, 30(1): 29 doi: 10.1016/j.jksus.2016.12.004
    [57] Kabir S. Imaging-based detection of AAR induced map-crack damage in concrete structure. NDT E Int, 2010, 43(6): 461 doi: 10.1016/j.ndteint.2010.04.007
    [58] Xu J M, Han N N, Li Y S. Image features of localized deformation of limestone. Chin J Rock Mech Eng, 2010, 29(10): 2110

    徐金明, 韓娜娜, 李巖松. 石灰巖局部化變形的圖像特征. 巖石力學與工程學報, 2010, 29(10):2110
    [59] Zhu L, Dang F N, Xue Y, et al. Analysis of micro-structural damage evolution of concrete through coupled X-ray computed tomography and gray-level co-occurrence matrices method. Constr Build Mater, 2019, 224: 534 doi: 10.1016/j.conbuildmat.2019.07.007
    [60] Wang P H, Qiao H X, Zhang Y S, et al. Meso-damage evolution analysis of magnesium oxychloride cement concrete based on X-CT and grey-level co-occurrence matrix. Constr Build Mater, 2020, 255: 119373 doi: 10.1016/j.conbuildmat.2020.119373
    [61] Sun K M, Wang J Y, Xin L W. Research on the law of secondary cracks propagation in coal and rock caused by gas wedging during supercritical CO2 explosion under different stress differences. Chin J Appl Mech, 2019, 36(2): 466

    孫可明, 王金彧, 辛利偉. 不同應力差條件下超臨界CO2氣爆煤巖體氣楔作用次生裂紋擴展規律研究. 應用力學學報, 2019, 36(2):466
    [62] Wang H Y, Liu Y Z, Dong D Z, et al. Scientific issues on effective development of marine shale gas in Southern China. Petroleum Explor Dev, 2013, 40(5): 615 doi: 10.1016/S1876-3804(13)60080-4
    [63] Ma T S, Chen P. Study of meso-damage characteristics of shale hydration based on CT scanning technology. Petroleum Explor Dev, 2014, 41(2): 249 doi: 10.1016/S1876-3804(14)60029-X
    [64] Cui J, Liu D M, Cai Y D, et al. Insights into fractures and minerals in subbituminous and bituminous coals by FESEM-EDS and X-ray μ-CT. Fuel, 2019, 237: 977 doi: 10.1016/j.fuel.2018.10.062
    [65] Singhal B B S, Gupta R P. Applied Hydrogeology of Fractured Rocks. Dordrecht: Springer Netherlands, 2010
    [66] Honeycutt C E, Plotnick R. Image analysis techniques and gray-level co-occurrence matrices (GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures. Comput Geosci, 2008, 34(11): 1461 doi: 10.1016/j.cageo.2008.01.006
    [67] Lloyd K, Rosin P L, Marshall D, et al. Detecting violent and abnormal crowd activity using temporal analysis of grey level co-occurrence matrix (GLCM)-based texture measures. Mach Vis Appl, 2017, 28(3-4): 361 doi: 10.1007/s00138-017-0830-x
  • 加載中
圖(13) / 表(3)
計量
  • 文章訪問數:  539
  • HTML全文瀏覽量:  233
  • PDF下載量:  68
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-06-17
  • 網絡出版日期:  2021-08-18
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回