<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于手機移動傳感網絡的礦震群智定位方法

羅浩 馮天真 于靖康 潘一山 張利

羅浩, 馮天真, 于靖康, 潘一山, 張利. 基于手機移動傳感網絡的礦震群智定位方法[J]. 工程科學學報, 2022, 44(12): 2017-2028. doi: 10.13374/j.issn2095-9389.2021.06.16.007
引用本文: 羅浩, 馮天真, 于靖康, 潘一山, 張利. 基于手機移動傳感網絡的礦震群智定位方法[J]. 工程科學學報, 2022, 44(12): 2017-2028. doi: 10.13374/j.issn2095-9389.2021.06.16.007
LUO Hao, FENG Tian-zhen, YU Jing-kang, PAN Yi-shan, ZHANG Li. Crowdsensing location method of mining-induced seismicity based on the phone mobile sensor network[J]. Chinese Journal of Engineering, 2022, 44(12): 2017-2028. doi: 10.13374/j.issn2095-9389.2021.06.16.007
Citation: LUO Hao, FENG Tian-zhen, YU Jing-kang, PAN Yi-shan, ZHANG Li. Crowdsensing location method of mining-induced seismicity based on the phone mobile sensor network[J]. Chinese Journal of Engineering, 2022, 44(12): 2017-2028. doi: 10.13374/j.issn2095-9389.2021.06.16.007

基于手機移動傳感網絡的礦震群智定位方法

doi: 10.13374/j.issn2095-9389.2021.06.16.007
基金項目: 國家自然科學基金資助項目(51704138); 國家重點研發計劃資助項目(2017YFC0804208); 遼寧省教育廳科學技術研究資助項目(LQN201910)
詳細信息
    通訊作者:

    E-mail:luohao8711@163.com

  • 中圖分類號: TD76

Crowdsensing location method of mining-induced seismicity based on the phone mobile sensor network

More Information
  • 摘要: 為提高礦震監測系統定位精度,減少監測盲區,降低監測成本,基于分布式的思想,提出一種基于手機移動傳感網絡的礦震定位方法。首先以礦區附近工人及家屬等使用的智能手機建立手機移動傳感網絡,其次對模擬震源點網格化,構建基于標準差的目標函數,提出改進的螢火蟲尋優策略,并使用拐點回溯法以及手機移動傳感網絡排除離散點策略(EDPS)降低定位誤差,最后通過礦震模擬實驗進行驗證。實驗結果表明:在手機移動傳感網絡無到時誤差理想情況下,所有模擬震源點都能夠準確收斂至震源位置,定位誤差小于1 m。但手機相較于檢波器到時誤差較高,且定位誤差與到時誤差具有相關性,當手機到時誤差為?1.0~1.0 s時,傳統算法定位誤差為216 m,無法實現高精度定位。通過研究目標函數值與定位誤差間的關系,提出并使用拐點回溯法以及EDPS兩種優化方法,算法絕對定位誤差降低至73 m,當到時誤差為?0.2~0.2 s時,絕對定位誤差降低至17 m,定位精度提高76.1%。基于手機移動傳感網絡的礦震群智定位方法,為礦震監測提供了一種新方法,未來可考慮與井下微震系統聯合,在節省監測成本、提高定位精度方面具有重要意義。

     

  • 圖  1  礦震發生過程手機移動傳感網絡觸發示意

    Figure  1.  Trigger diagram of the mobile phone sensor network in the process of a mine earthquake

    圖  2  手機移動傳感網絡礦震監測與群智定位流程

    Figure  2.  Flow chart of mining-induced seismicity monitoring and crowdsensing positioning based on the mobile phone sensor network

    圖  3  模擬震源點移動過程

    Figure  3.  Movement of the simulation of source point

    圖  4  采用兩種移動率時移動距離和保留距離的變化情況. (a)采用靜態移動率;(b)采用動態移動率

    Figure  4.  Change of the moving distance and reserved distance with two moving rates: (a) using static movement rate;(b) using dynamic movement rate

    圖  5  最優模擬震源點F隨迭代次數增加的移動情況. (a) 目標函數值與定位誤差的對應關系; (b) 模擬震源點移動情況示意圖

    Figure  5.  Movement of the optimal simulated source point F with the increase of the number of iterations: (a) correspondence between objective function value and positioning error; (b) schematic diagram of the movement of the simulated earthquake source point

    圖  6  EDPS執行流程

    Figure  6.  EDPS execution process

    圖  7  群智定位方法空間模型

    Figure  7.  Spatial model of the group intelligence location method

    圖  8  模擬震源點初始化情況

    Figure  8.  Simulated source point initialization

    圖  9  無到時誤差模擬震源點移動情況. (a) 模擬震源點移動5次的情況; (b) 模擬震源點移動10次的情況; (c) 模擬震源點移動15次的情況; (d) 模擬震源點移動20次的情況; (e) 模擬震源點移動40次的情況; (f) 模擬震源點移動60次的情況

    Figure  9.  Simulation of the source point movement without time error: (a) simulation of 5 movements of the earthquake source point; (b) simulation of 10 movements of the earthquake source point; (c) simulation of 15 movements of the earthquake source point; (d) simulation of 20 movements of the earthquake source point; (e) simulation of 40 movements of the earthquake source point; (f) simulation of 60 movements of the earthquake source point

    圖  10  ?1.0~1.0 s到時誤差模擬震源點移動情況. (a) 模擬震源點移動5次的情況; (b) 模擬震源點移動10次的情況; (c) 模擬震源點移動15次的情況; (d) 模擬震源點移動20次的情況; (e) 模擬震源點移動40次的情況; (f) 模擬震源點移動60次的情況

    Figure  10.  Simulation of the source point movement under ?1.0–1.0 s time error: (a) simulation of 5 movements of the earthquake source point; (b) simulation of 10 movements of the earthquake source point; (c) simulation of 15 movements of the earthquake source point; (d) simulation of 20 movements of the earthquake source point; (e) simulation of 40 movements of the earthquake source point; (f) simulation of 60 movements of the earthquake source point

    圖  11  使用拐點回溯法以及EDPS多次計算情況. (a) 二次計算定位情況;(b) 三次計算定位情況;(c)四次計算定位情況

    Figure  11.  Positioning by the inflection point backtracking method and EDPS repeatedly: (a) second calculation of the positioning situation; (b) third calculation of the positioning situation; (c) fourth calculation of positioning situation

    圖  12  智能手機到時分布. (a) 使用EDPS前智能手機到時與X、Y軸的關系 (b) 使用EDPS后智能手機到時與X、Y軸的關系

    Figure  12.  Distribution graph of the smart phone arrival time: (a) relationship between smartphone arrival and X, Y axes before using EDPS; (b) relationship between smartphone arrival time and X, Y axes after using EDPS

    圖  13  目標函數與定位誤差的相互關系

    Figure  13.  Relationship between the objective function value and positioning error value

    圖  14  EDPS對于定位誤差影響

    Figure  14.  Influence of the EDPS on the positioning error

    表  1  智能手機的位置與到時信息

    Table  1.   Location and arrival information of smartphones

    Phone numberSmartphone informationPhone numberSmartphone information
    X/mY/mZ/mArrival time/sX/mY/mZ/mArrival time/s
    18555.31381.71019.311.71373956.38251.91014.610.692
    26564.13225.41006.411.15183247.24611.91004.211.159
    34140.857.61001.112.06393441.45677.51011.810.951
    4988.03911.41000.411.731104117.21871.11019.711.623
    55001.91018.51008.211.765117305.18095.41012.310.273
    63763.975.91010.611.071125571.12186.31011.410.298
    下載: 導出CSV

    表  2  不同震源位置的計算結果

    Table  2.   Calculation result of different source positions

    Microseismic eventsTrue focal location/mCalculated focal location/mError value/m
    Event 1(3002.0,436.0,726.0)(3002.0,436.0,726.0)0.00782
    Event 2(2002.0,336.0,126.0)(2001.9,335.9,126.0)4.8e-05
    Event 3(8123.0,6036.0,526.0)(8122.9,6036.0,527.1)0.13691
    Event 4(5433.0,7566.0,126.0)(5433.1,7565.9,126.3)0.38932
    Event 5(9520.0,7500.0,826.0)(9519.9,7499.9,826.1)0.14616
    下載: 導出CSV

    表  3  普通螢火蟲和優化螢火蟲定位結果對比

    Table  3.   Comparison of location results between the common firefly and optimized firefly location algorithm

    Arrival time error/sTrue focal location/mCommon firefly location algorithmOptimized firefly location algorithm
    Location results /mObjective function valueError value/mLocation results/mObjective function valueError value/m
    ?1.0–1.0(6500.0,7630.0,520.0)Non convergence>1000(6657.2,7491.7,573.8)0.3819216
    ?0.8–0.8(6500.0,7630.0,520.0)Non convergence>1000(6392.5,7670.7,674.1)0.2543192
    ?0.6–0.6(6500.0,7630.0,520.0)Non convergence>1000(6548.1,7731.3,429.1)0.1561144
    ?0.4–0.4(6500.0,7630.0,520.0)(7065.2,8156.6,427.1)1.2266997(6527.7,7655.2,416.2)0.0771110
    ?0.2–0.2(6500.0,7630.0,520.0)(6649.1,7796.9,694.2)0.8654488 (6533.9,7620.1,457.5.4)0.052271
    下載: 導出CSV

    表  4  EDPS算法執行結果

    Table  4.   Results of the EDPS algorithm execution

    Count timeTrue focal location/mCalculated focal location/mObjective function valueError value/mPhone number
    1(6500.0,7630.0,520.0)(6657.2,7491.6,573.8)0.3819216300
    2(6500.0,7630.0,520.0)(6508.3,7491.7,537.2)0.2220139250
    3(6500.0,7630.0,520.0)(6464.5,7605.8,608.1)0.117898200
    4(6500.0,7630.0,520.0)(6537.6,7615.8,580.9)0.056973150
    下載: 導出CSV

    表  5  不同到時誤差下算法執行情況

    Table  5.   Algorithm execution under different time errors

    Arrival time error/sTrue focal location/mNone EDPS calculated focal location/mObjective function valueError value/mWith EDPS calculated focal location/mObjective function valueError value/m
    ?1.0–1.0(6500.0,7630.0,520.0)(6657.2,7491.7,573.8)0.3819216(6537.6,7615.8,580.9)0.056973
    ?0.8–0.8(6500.0,7630.0,520.0)(6392.5,7670.7,674.1)0.2543192(6459.8,7653.6,558.0)0.049360
    ?0.6–0.6(6500.0,7630.0,520.0)(6548.1,7731.3,429.1)0.1561144(6486.8,7600.5,554.1)0.041147
    ?0.4–0.4(6500.0,7630.0,520.0)(6527.7,7655.2,416.2)0.0771110(6507.3,7622.8,501.4)0.017421
    ?0.2–0.2(6500.0,7630.0,520.0)(6533.9,7620.1,457.5.4)0.052271(6497.6,7618.6,507.4)0.007817
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Jiang Y D, Pan Y S, Jiang F X, et al. State of the art review on mechanism and prevention of coal bumps in China. J China Coal Soc, 2014, 39(2): 205 doi: 10.13225/j.cnki.jccs.2013.0024

    姜耀東, 潘一山, 姜福興, 等. 我國煤炭開采中的沖擊地壓機理和防治. 煤炭學報, 2014, 39(2):205 doi: 10.13225/j.cnki.jccs.2013.0024
    [2] Qi Q X, Pan Y S, Li H T, et al. Theoretical basis and key technology of prevention and control of coal-rock dynamic disasters in deep coal mining. J China Coal Soc, 2020, 45(5): 1567 doi: 10.13225/j.cnki.jccs.DY20.0453

    齊慶新, 潘一山, 李海濤, 等. 煤礦深部開采煤巖動力災害防控理論基礎與關鍵技術. 煤炭學報, 2020, 45(5):1567 doi: 10.13225/j.cnki.jccs.DY20.0453
    [3] Jiang F X. Application of microseismic monitoring technology of strata fracturing in underground coal mine. Chin J Geotech Eng, 2002, 24(2): 147 doi: 10.3321/j.issn:1000-4548.2002.02.004

    姜福興. 微震監測技術在礦井巖層破裂監測中的應用. 巖土工程學報, 2002, 24(2):147 doi: 10.3321/j.issn:1000-4548.2002.02.004
    [4] Zhang D, Dai R, Zeng Z Y, et al. Technology and application of BSN microseismic monitoring in mines. J Earthq Res China, 2021, 37(2): 332 doi: 10.3969/j.issn.1001-4683.2021.02.008

    張達, 戴銳, 曾志毅, 等. BSN礦山微震監測技術及其應用. 中國地震, 2021, 37(2):332 doi: 10.3969/j.issn.1001-4683.2021.02.008
    [5] Pan Y S, Zhao Y F, Guan F H, et al. Study on rockburst monitoring and orientation system and its application. Chin J Rock Mech Eng, 2007, 26(5): 1002 doi: 10.3321/j.issn:1000-6915.2007.05.020

    潘一山, 趙揚鋒, 官福海, 等. 礦震監測定位系統的研究及應用. 巖石力學與工程學報, 2007, 26(5):1002 doi: 10.3321/j.issn:1000-6915.2007.05.020
    [6] National Mine Safety Supervision Bureau. Notice of the office of the state administration of coal mine safety and the office of the china earthquake administration on the establishment of a seismic information sharing mechanism for rockburst mines[J/OL]. National Mine Safety Supervision Bureau website (2020-06-04) [2021-06-16].https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/tzgg/202006/t20200604_353526.shtml

    國家礦山安全監察局. 國家煤礦安監局辦公室 中國地震局辦公室關于建立沖擊地壓礦井地震信息共享機制的通知[J/OL]. 國家礦山安全監察局網站 (2020-06-04) [2021-06-16].https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/tzgg/202006/t20200604_353526.shtml
    [7] Zhou M B, Wu J X. Spatial arrangement of sensors in a new source location method. Mod Min, 2015, 31(2): 99 doi: 10.3969/j.issn.1674-6082.2015.02.032

    周美波, 吳建星. 震源定位新方法中傳感器的空間布置. 現代礦業, 2015, 31(2):99 doi: 10.3969/j.issn.1674-6082.2015.02.032
    [8] Kong Q K, Allen R M, Schreier L, et al. MyShake: A smartphone seismic network for earthquake early warning and beyond. Sci Adv, 2016, 2(2): e1501055 doi: 10.1126/sciadv.1501055
    [9] Li X G. Seismic Event Detection Based on Smartphone Accelerometer [Dissertation]. Wuhan: Wuhan University, 2017

    李小光. 基于手機加速度計的地震事件檢測方法研究[學位論文]. 武漢: 武漢大學, 2017
    [10] Pei Y Y, Yang X B, Chuan J P, et al. Time series prediction of microseismic energy level based on feature extraction of onedimensional convolutional neural network. Chin J Eng, 2021, 43(7): 1003

    裴艷宇, 楊小彬, 傳金平, 等. 一維卷積神經網絡特征提取下微震能級時序預測. 工程科學學報, 2021, 43(7):1003
    [11] Qi Q X, Pan Y S, Shu L Y, et al. Theory and technical framework of prevention and control with different sources in multi-scales for coal and rock dynamic disasters in deep mining of coal mines. J China Coal Soc, 2018, 43(7): 1801

    齊慶新, 潘一山, 舒龍勇, 等. 煤礦深部開采煤巖動力災害多尺度分源防控理論與技術架構. 煤炭學報2018, 43(7): 1801
    [12] Meng Y, Xiao X F, Zhao K. An underground localization algorithm and topology optimization based on ultra-wideban. Chin J Eng, 2018, 40(6): 743

    孟宇, 肖小鳳, 趙坤. 基于UWB的地下定位算法和拓撲優化. 工程科學學報, 2018, 40(6):743
    [13] Pang H D, Jiang F X, Zhang X M. Study on nonhomogeneous material's AE by image processing method. J Rock Soil Mech, 2004, 25(Suppl 1): 60

    逄煥東, 姜福興, 張興民. 微地震的線性方程定位求解及其病態處理. 巖土力學, 2004, 25(增刊1): 60
    [14] Fan Q, Xu C Q, Chen W. Simplex-annealing hybrid method and its application to parameter estimation. Geospat Inf, 2005, 3(3): 57 doi: 10.3969/j.issn.1672-4623.2005.03.024

    范千, 許承權, 陳偉. 單純形——模擬退火混合算法及其在參數估計中的應用. 地理空間信息, 2005, 3(3):57 doi: 10.3969/j.issn.1672-4623.2005.03.024
    [15] Lü J G, Jiang Y D, Zhao Y X, et al. Study of microseismic positioning based on steady simulated annealing-simplex hybrid algorithm. Rock Soil Mech, 2013, 34(8): 2195 doi: 10.16285/j.rsm.2013.08.024

    呂進國, 姜耀東, 趙毅鑫, 等. 基于穩健模擬退火-單純形混合算法的微震定位研究. 巖土力學, 2013, 34(8):2195 doi: 10.16285/j.rsm.2013.08.024
    [16] Jiang T Q, Pei S J. Micro-seismic event location based on Newton iteration method and grid-search method. J Min Sci Technol, 2019, 4(6): 480

    姜天琪, 裴爍瑾. 基于網格搜索?牛頓迭代法的微震震源定位算法. 礦業科學學報, 2019, 4(6):480
    [17] Wang R, Xiao B S. Cooperative search for multi-UAVs via an improved pigeon-inspired optimization and Markov chain approach. Chin J Eng, 2019, 41(10): 1342

    王瑞, 肖冰松. 基于改進鴿群優化和馬爾可夫鏈的多無人機協同搜索方法. 工程科學學報, 2019, 41(10):1342
    [18] Yang W, Chen L, Wang Y, et al. Multi/many-objective particle swarm optimization algorithm based on competition mechanism. Comput Intell Neurosci, 2020: 5132803
    [19] Chen B R, Feng X T, Li S L, et al. Microseism source location with hierarchical strategy based on particle swarm optimization. Chin J Rock Mech Eng, 2009, 28(4): 740 doi: 10.3321/j.issn:1000-6915.2009.04.012

    陳炳瑞, 馮夏庭, 李庶林, 等. 基于粒子群算法的巖體微震源分層定位方法. 巖石力學與工程學報, 2009, 28(4):740 doi: 10.3321/j.issn:1000-6915.2009.04.012
    [20] Wang D C. Feature Extraction and Activity Recognition Based on Phone Acceleration Data [Dissertation]. Lanzhou: Lanzhou University, 2017

    王大川. 基于手機加速度數據的特征提取和行為識別研究[學位論文]. 蘭州: 蘭州大學, 2017
    [21] Feng J H, Li G L, Feng J H. A survey on crowdsourcing. Chin J Comput, 2015, 38(9): 1713 doi: 10.11897/SP.J.1016.2015.01713

    馮劍紅, 李國良, 馮建華. 眾包技術研究綜述. 計算機學報, 2015, 38(9):1713 doi: 10.11897/SP.J.1016.2015.01713
    [22] Liang Q P. Research and Implementation of Context-Aware in Crowd Sensing Based on Mobile Terminals [Dissertation]. Guangzhou: South China University of Technology, 2013

    梁欽沛. 基于移動終端的群智感知中情境識別方法的研究與實現[學位論文]. 廣州: 華南理工大學, 2013
    [23] Song Y, Zhu S. A network time service system based on NTP. Comput Eng Appl, 2003, 39(36): 147 doi: 10.3321/j.issn:1002-8331.2003.36.048

    宋妍, 朱爽. 基于NTP的網絡時間服務系統的研究. 計算機工程與應用, 2003, 39(36):147 doi: 10.3321/j.issn:1002-8331.2003.36.048
    [24] Liu C P, Ye C M. Novel bioinspired swarm intelligence optimization algorithm: Firefly algorithm. Appl Res Comput, 2011, 28(9): 3295 doi: 10.3969/j.issn.1001-3695.2011.09.024

    劉長平, 葉春明. 一種新穎的仿生群智能優化算法: 螢火蟲算法. 計算機應用研究, 2011, 28(9):3295 doi: 10.3969/j.issn.1001-3695.2011.09.024
    [25] Khan A, Hizam H, Wahab N I A, et al. Optimal power flow using hybrid firefly and particle swarm optimization algorithm. Plos One, 2020, 15(8): e0235668 doi: 10.1371/journal.pone.0235668
  • 加載中
圖(14) / 表(5)
計量
  • 文章訪問數:  480
  • HTML全文瀏覽量:  207
  • PDF下載量:  47
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-06-16
  • 網絡出版日期:  2021-10-21
  • 刊出日期:  2022-12-01

目錄

    /

    返回文章
    返回