<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

OFDM系統中基于最優閾值ACE的PAPR抑制

吳群 周曉 王成優

吳群, 周曉, 王成優. OFDM系統中基于最優閾值ACE的PAPR抑制[J]. 工程科學學報, 2023, 45(1): 150-157. doi: 10.13374/j.issn2095-9389.2021.06.15.001
引用本文: 吳群, 周曉, 王成優. OFDM系統中基于最優閾值ACE的PAPR抑制[J]. 工程科學學報, 2023, 45(1): 150-157. doi: 10.13374/j.issn2095-9389.2021.06.15.001
WU Qun, ZHOU Xiao, WANG Cheng-you. PAPR reduction based on optimal threshold ACE in OFDM system[J]. Chinese Journal of Engineering, 2023, 45(1): 150-157. doi: 10.13374/j.issn2095-9389.2021.06.15.001
Citation: WU Qun, ZHOU Xiao, WANG Cheng-you. PAPR reduction based on optimal threshold ACE in OFDM system[J]. Chinese Journal of Engineering, 2023, 45(1): 150-157. doi: 10.13374/j.issn2095-9389.2021.06.15.001

OFDM系統中基于最優閾值ACE的PAPR抑制

doi: 10.13374/j.issn2095-9389.2021.06.15.001
基金項目: 山東省自然科學基金資助項目(ZR2022MF256);山東省自然科學基金創新發展聯合基金資助項目(ZR2021LZH003);國家自然科學基金資助項目(61702303);山東大學(威海)科研訓練計劃資助項目(A21246, A22085)
詳細信息
    通訊作者:

    E-mail: zhouxiao@sdu.edu.cn

  • 中圖分類號: TN911.2

PAPR reduction based on optimal threshold ACE in OFDM system

More Information
  • 摘要: 動態星座圖擴展(Active constellation extension, ACE)是一種能夠有效降低正交頻分復用(Orthogonal frequency division multiplexing, OFDM)系統峰均功率比(Peak-to-average power ratio, PAPR)的方法,為解決現有ACE算法因選擇固定限幅閾值而限制降低PAPR效果的問題,提出一種最優閾值ACE(Optimal threshold ACE, OTACE)算法,該算法能在每次迭代時根據信號功率求得最合適的限幅閾值,從而增強抑制PAPR的效果。通過數據擬合得到合適的迭代次數,在此基礎上對OTACE算法抑制PAPR的效果進行了仿真分析,仿真結果表明,與凸集映射(Projection onto convex sets, POCS)和智能梯度投影(Smart gradient projection, SGP)算法相比,OTACE分別能提高5 dB和3 dB左右的PAPR增益。在廣電1、廣電6和巴西A三種信道下,分別在多普勒頻移為20 Hz和60 Hz時測試OTACE算法對系統誤碼率(Bit error rate, BER)的影響。實驗結果顯示,采用OTACE可提高系統的BER性能,并且與POCS相比,OTACE可提高1 dB左右的信噪比(Signal-to-noise ratio, SNR)增益;與SGP相比,OTACE在高SNR時有明顯的優勢。

     

  • 圖  1  具有PAPR抑制的OFDM系統模型

    Figure  1.  OFDM system model with PAPR reduction

    圖  2  POCS算法流程圖

    Figure  2.  Specific process of POCS algorithm

    圖  3  不同迭代次數下的CCDF曲線

    Figure  3.  CCDF curves under different iteration times

    圖  4  不同子載波數下的CCDF曲線. (a) $ N = 256 $; (b) $ N = 512 $; (c) $ N = 1024 $; (d) $ N = 2048 $

    Figure  4.  CCDF curves under different subcarriers: (a) $ N = 256 $; (b) $ N = 512 $; (c) $ N = 1024 $; (d) $ N = 2048 $

    圖  5  動態CDT 1信道下BER性能曲線. (a) 20 Hz; (b) 60 Hz

    Figure  5.  BER performance curves under the CDT 1 dynamic channel: (a) 20 Hz; (b) 60 Hz

    圖  6  動態CDT 6信道下BER性能曲線. (a) 20 Hz; (b) 60 Hz

    Figure  6.  BER performance curves under the CDT 6 dynamic channel: (a) 20 Hz; (b) 60 Hz

    圖  7  動態Brazil A信道下BER性能曲線. (a) 20 Hz; (b) 60 Hz

    Figure  7.  BER performance curves under the Brazil A dynamic channel: (a) 20 Hz; (b) 60 Hz

    Algorithm 1 Searching the optimal threshold
    Variable declaration:
    $ {A_{{\text{array}}}} $: Array of all possible values of the threshold$ S $: Size of $ {A_{{\text{array}}}} $$ L $: Total number of OFDM symbols$ {M_{\text{P}}} $: Average signal power after clipping$ {P_{\text{P}}} $: Maximum signal power after clipping$ {A_{{\text{opt}}}} $: Optimal threshold
    Searching procedure:
    for $ s = 1:S $ do
    for $ n = 1:L $ do
    calculate $ z(n) $ according to (12)
    end for
    $ {M_{\text{P}}}(s) = {\text{E}}\{ |z(n){|^2}\} $
    $ {P_{\text{P}}}(s) = {\text{max}}\{ |z(n){|^2}\} $
    $R(s) = \dfrac{{{P_{\text{P}}}(s)}}{{{M_{\text{P}}}(s)}}$
    $ M = R(1) $
    if $ M > R(s) $
    $ M = R(s) $
    $ k = s $
    end if
    end for
    $ {A_{{\text{opt}}}} = {A_{{\text{array}}}}(k) $
    Output $ {A_{{\text{opt}}}} $
    下載: 導出CSV

    表  1  系統仿真設置

    Table  1.   System simulation setting

    MeaningParametersSpecifications
    System modelSISO-OFDM
    Modulation modeQPSK
    System baseband bandwidth$ {B_{{\text{bw}}}} $/ MHz7.56
    OFDM symbols number$ {N_{{\text{OFDM}}}} $100
    Pilot patternComb
    Pilot interval$ {P_{\text{i}}} $3
    CP length$ {N_{{\text{CP}}}} $256
    Data subcarriers number$ N $2048
    Total subcarriers number$ {N_{{\text{TS}}}} $2304
    Doppler spread$ {f_{\text{D}}} $/ Hz20, 60
    下載: 導出CSV

    表  2  計算復雜度對比

    Table  2.   Computational complexity comparison

    PAPR suppression algorithmsComplex multiplicationComplex addition
    POCS[18]$ N(1 + 2{\log _2}N) $$ N{\log _2}N $
    MACE[19]$ 2N(1 + {\log _2}N) $$ N(1 + {\log _2}N) $
    SGP[20]$ 2N(1 + {\log _2}N) $$ N(1 + {\log _2}N) $
    AST-SLM[21]$ N{\log _2}N $$ 2N(1 + {\log _2}N) $
    EPOCS[22]$ N{\log _2}N $$ 2N{\log _2}N $
    OTACE$ 2N(1 + {\log _2}N) $$ N(2 + {\log _2}N) $
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Senol H, Tepedelenlioglu C. Subspace-based estimation of rapidly varying mobile channels for OFDM systems. IEEE Trans Signal Process, 2021, 69: 385 doi: 10.1109/TSP.2020.3045562
    [2] Hu C, Wang L, Zhou Z. PAPR reduction scheme for OFDM systems based on Arnold transform without side information // Proceedings of the IEEE 24th International Conference on Computer Supported Cooperative Work in Design. Dalian, 2021: 1287
    [3] Memisoglu E, Duranay A, Arslan H. Numerology scheduling for PAPR reduction in mixed numerologies. IEEE Wireless Commun Lett, 2021, 10(6): 1197 doi: 10.1109/LWC.2021.3061628
    [4] Wang B, Si Q, Jin M. A novel tone reservation scheme based on deep learning for PAPR reduction in OFDM systems. IEEE Commun Lett, 2020, 24(6): 1271 doi: 10.1109/LCOMM.2020.2980832
    [5] Wunder G, Fischer R F H, Boche H, et al. The PAPR problem in OFDM transmission: New directions for a long-lasting problem. IEEE Signal Process Mag, 2013, 30(6): 130 doi: 10.1109/MSP.2012.2218138
    [6] Hu M X, Wang W, Cheng W, et al. A generalized piecewise linear companding transform for PAPR reduction in OFDM systems. IEEE Trans Broadcast, 2020, 66(1): 170 doi: 10.1109/TBC.2019.2909183
    [7] Mestdagh D J G, Monsalve J L G, Brossier J M. Green OFDM: A new selected mapping method for OFDM PAPR reduction. Electron Lett, 2018, 54(7): 449 doi: 10.1049/el.2017.4743
    [8] Lim S C, Kim N, Park H. Polar coding-based selective mapping for PAPR reduction without redundant information transmission. IEEE Commun Lett, 2020, 24(8): 1621 doi: 10.1109/LCOMM.2020.2989205
    [9] Kumar T D, Venkatesan P. Performance estimation of multicarrier CDMA using adaptive brain storm optimization for 5G communication system in frequency selective fading channel. Trans Emerg Telecommun Technol, 2020, 31(4): e3829
    [10] Harthi N A, Zhang Z F, Kim D, et al. Peak-to-average power ratio reduction method based on partial transmit sequence and discrete Fourier transform spreading. Electronics, 2021, 10(6): 642 doi: 10.3390/electronics10060642
    [11] Lahbabi N, Bulusu S S K C, Helard J F, et al. Very efficient tone reservation PAPR reduction fully compatible with ATSC 3.0 standard: Performance and practical implementation analysis. IEEE Access, 2018, 6: 58355
    [12] El Hassan M, Crussiere M, Helard J F, et al. EVM closed-form expression for OFDM signals with tone reservation-based PAPR reduction. IEEE Trans Wirel Commun, 2020, 19(4): 2352 doi: 10.1109/TWC.2020.2964196
    [13] Ma Z G, Song J Q. Survey of energy efficiency for 5G ultra-dense networks. Chin J Eng, 2019, 41(8): 968

    馬忠貴, 宋佳倩. 5G超密集網絡的能量效率研究綜述. 工程科學學報, 2019, 41(8):968
    [14] Li J Y, Zhao Y K, Xue Z E, et al. A survey of model compression for deep neural networks. Chin J Eng, 2019, 41(10): 1229

    李江昀, 趙義凱, 薛卓爾, 等. 深度神經網絡模型壓縮綜述. 工程科學學報, 2019, 41(10):1229
    [15] Wang X, Jin N D, Wei J D. A model-driven DL algorithm for PAPR reduction in OFDM system. IEEE Commun Lett, 2021, 25(7): 2270 doi: 10.1109/LCOMM.2021.3076605
    [16] Ro J, Lee W S, Kang M G, et al. A strategy of signal detection for performance improvement in clipping based OFDM system. Comput Mater Continua, 2020, 64(1): 181 doi: 10.32604/cmc.2020.09998
    [17] Kalinov A, Bychkov R, Ivanov A, et al. Machine learning-assisted PAPR reduction in massive MIMO. IEEE Wirel Commun Lett, 2021, 10(3): 537 doi: 10.1109/LWC.2020.3036909
    [18] Jones D L. Peak power reduction in OFDM and DMT via active channel modification // Proceedings of the Asilomar Conference. Pacific Grove, 1999: 1076
    [19] Samayoa Y, Ostermann J. Modified active constellation extension algorithm for PAPR reduction in OFDM systems // Proceedings of the Wireless Telecommunications Symposium. Washington, 2020: 9198714
    [20] Krongold B S, Jones D L. PAR reduction in OFDM via active constellation extension. IEEE Trans Broadcast, 2003, 49(3): 258 doi: 10.1109/TBC.2003.817088
    [21] Li G, Li T Y. A low-complexity PAPR reduction SLM scheme for STBC MIMO-OFDM systems based on constellation extension. KSII Trans Internet Inf Syst, 2019, 13(6): 2908
    [22] Liu Y Z, Wang Y, Ai B. An efficient ACE scheme for PAPR reduction of OFDM signals with high-order constellation. IEEE Access, 2019, 7: 118322 doi: 10.1109/ACCESS.2019.2936917
    [23] Tang R G, Zhou X, Wang C Y. A Haar wavelet decision feedback channel estimation method in OFDM systems. Appl Sci, 2018, 8(6): 877 doi: 10.3390/app8060877
    [24] Tang R G, Zhou X, Wang C Y. A novel low rank LMMSE channel estimation method in OFDM systems // Proceedings of the 17th IEEE International Conference on Communication Technology. Chengdu, 2017: 249
    [25] Zhang M T, Zhou X, Wang C Y. Noise suppression threshold channel estimation method using RC and SRRC filters in OFDM systems // Proceedings of the 18th IEEE International Conference on Communication Technology. Chongqing, 2019: 176
    [26] Tang R G, Zhou X, Wang C Y. Kalman filter channel estimation in 2 × 2 and 4 × 4 STBC MIMO-OFDM systems. IEEE Access, 2020, 8: 189089 doi: 10.1109/ACCESS.2020.3027377
    [27] Zhang M T, Zhou X, Wang C Y. A novel noise suppression channel estimation method based on adaptive weighted averaging for OFDM systems. Symmetry, 2019, 11(8): 997 doi: 10.3390/sym11080997
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數:  655
  • HTML全文瀏覽量:  209
  • PDF下載量:  93
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-06-15
  • 網絡出版日期:  2021-09-08
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回