[1] |
Wang T M, Hao Y F, Yang X B, et al. Soft robotics: structure, actuation, sensing and control. J Mech Eng, 2017, 53(13): 1 doi: 10.3901/JME.2017.13.001王田苗, 郝雨飛, 楊興幫, 等. 軟體機器人: 結構、驅動、傳感與控制. 機械工程學報, 2017, 53(13):1 doi: 10.3901/JME.2017.13.001
|
[2] |
He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Autom Sin, 2017, 43(5): 685賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685
|
[3] |
Grissom M D, Chitrakaran V, Dienno D, et al. Design and experimental testing of the OctArm soft robot manipulator // Proceedings of SPIE, Unmanned Systems Technology VIII. Orlando, 2006, 6230: 491
|
[4] |
Neppalli S, Jones B, McMahan W, et al. OctArm - A soft robotic manipulator // 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, 2007: 2569
|
[5] |
Kier W M, Stella M P. The arrangement and function of octopus arm musculature and connective tissue. J Morphol, 2007, 268(10): 831 doi: 10.1002/jmor.10548
|
[6] |
Sumbre G, Fiorito G, Flash T, et al. Motor control of flexible octopus arms. Nature, 2005, 433(7026): 595 doi: 10.1038/433595a
|
[7] |
Cianchetti M, Arienti A, Follador M, et al. Design concept and validation of a robotic arm inspired by the octopus. Mater Sci Eng C, 2011, 31(6): 1230 doi: 10.1016/j.msec.2010.12.004
|
[8] |
Li T F, Li G R, Liang Y M, et al. Review of materials and structures in soft robotics. Chin J Theor Appl Mech, 2016, 48(4): 756 doi: 10.6052/0459-1879-16-159李鐵風, 李國瑞, 梁藝鳴, 等. 軟體機器人結構機理與驅動材料研究綜述. 力學學報, 2016, 48(4):756 doi: 10.6052/0459-1879-16-159
|
[9] |
Chen G, Pham M T, Redarce T. A semi-autonomous micro-robotic system for Colonoscopy // IEEE International Conference on Robotics and Biomimetics. Bangkok, 2009: 703
|
[10] |
Cianchetti M, Ranzani T, Gerboni G, et al. Soft robotics technologies to address shortcomings in today's minimally invasive surgery: The STIFF-FLOP approach. Soft Robotics, 2014, 1(2): 122 doi: 10.1089/soro.2014.0001
|
[11] |
Deng T, Wang H S, Chen W D, et al. Development of a new cable-driven soft robot for cardiac ablation // Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO). Shenzhen, 2013: 728
|
[12] |
Hawkes E W, Blumenschein L H, Greer J D, et al. A soft robot that navigates its environment through growth. Sci Robot, 2017, 2(8): eaan3028 doi: 10.1126/scirobotics.aan3028
|
[13] |
Amend J R, Brown E, Rodenberg N, et al. A positive pressure universal gripper based on the jamming of granular material. IEEE Trans Robotics, 2012, 28(2): 341 doi: 10.1109/TRO.2011.2171093
|
[14] |
Roche E T, Wohlfarth R, Overvelde J T B, et al. A bioinspired soft actuated material. Adv Mater, 2014, 26(8): 1200 doi: 10.1002/adma.201304018
|
[15] |
Hao Y F, Gong Z Y, Xie Z X, et al. Universal soft pneumatic robotic gripper with variable effective length //35th Chinese control conference (CCC). Chengdu, 2016: 6109
|
[16] |
Trivedi D, Lotfi A, Rahn C D. Geometrically exact models for soft robotic manipulators. IEEE Trans Robotics, 2008, 24(4): 773 doi: 10.1109/TRO.2008.924923
|
[17] |
Kapadia A, Walker I D. Task-space control of extensible continuum manipulators // 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, 2011: 1087
|
[18] |
Kapadia A D, Fry K E, Walker I D. Empirical investigation of closed-loop control of extensible continuum manipulators // 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014: 329
|
[19] |
Falkenhahn V, Hildebrandt A, Sawodny O. Trajectory optimization of pneumatically actuated, redundant continuum manipulators // 2014 American Control Conference. Portland, 2014: 4008
|
[20] |
Marchese A D, Tedrake R, Rus D. Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator. Int J Robotics Res, 2016, 35(8): 1000 doi: 10.1177/0278364915587926
|
[21] |
Santina C D, Rus D. Control oriented modeling of soft robots: The polynomial curvature case. IEEE Robotics Autom Lett, 2019, 5(2): 290
|
[22] |
Santina C D, Bicchi A, Rus D. On an improved state parametrization for soft robots with piecewise constant curvature and its use in model based control. IEEE Robotics Autom Lett, 2020, 5(2): 1001 doi: 10.1109/LRA.2020.2967269
|
[23] |
Shepherd R F, Ilievski F, Choi W, et al. Multigait soft robot. PNAS, 2011, 108(51): 20400 doi: 10.1073/pnas.1116564108
|
[24] |
Ilievski F, Mazzeo A D, Shepherd R F, et al. Soft robotics for chemists. Angew Chem Int Ed, 2011, 50(8): 1890 doi: 10.1002/anie.201006464
|
[25] |
Martinez R V, Branch J L, Fish C R, et al. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv Mater, 2013, 25(2): 205 doi: 10.1002/adma.201203002
|
[26] |
Martinez R V, Glavan A C, Keplinger C, et al. Soft actuators and robots that are resistant to mechanical damage. Adv Funct Mater, 2014, 24(20): 3003 doi: 10.1002/adfm.201303676
|
[27] |
Martinez R V, Fish C R, Chen X, et al. Elastomeric origami: Programmable paper-elastomer composites as pneumatic actuators. Adv Funct Mater, 2012, 22(7): 1376 doi: 10.1002/adfm.201102978
|
[28] |
Lin H T, Leisk G G, Trimmer B. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir Biomim, 2011, 6(2): 026007 doi: 10.1088/1748-3182/6/2/026007
|
[29] |
Kim H J, Song S H, Ahn S H. A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Mater Struct, 2013, 22(1): 014007 doi: 10.1088/0964-1726/22/1/014007
|
[30] |
Song S H, Kim M S, Rodrigue H, et al. Turtle mimetic soft robot with two swimming gaits. Bioinspir Biomim, 2016, 11(3): 036010 doi: 10.1088/1748-3190/11/3/036010
|
[31] |
Wang Z L, Hang G R, Wang Y W, et al. Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion. Smart Mater Struct, 2008, 17(2): 025039 doi: 10.1088/0964-1726/17/2/025039
|
[32] |
Villanueva A, Smith C, Priya S. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir Biomim, 2011, 6(3): 036004 doi: 10.1088/1748-3182/6/3/036004
|
[33] |
Colorado J, Barrientos A, Rossi C, et al. Biomechanics of smart wings in a bat robot: Morphing wings using SMA actuators. Bioinspir Biomim, 2012, 7(3): 036006 doi: 10.1088/1748-3182/7/3/036006
|
[34] |
Tadesse Y, Hong D, Priya S. Twelve degree of freedom baby humanoid head using shape memory alloy actuators. J Mech Robotics, 2011, 3(1): 011008 doi: 10.1115/1.4003005
|
[35] |
Shepherd R F, Stokes A A, Freake J, et al. Using explosions to power a soft robot. Angew Chem Int Ed, 2013, 52(10): 2892 doi: 10.1002/anie.201209540
|
[36] |
Bartlett N W, Tolley M T, Overvelde J T B, et al. A 3D-printed, functionally graded soft robot powered by combustion. Science, 2015, 349(6244): 161 doi: 10.1126/science.aab0129
|
[37] |
Suzumori K. Flexible microactuator: 1st Report, Static characteristics of 3 DOF actuator. Trans JSME(C), 1989, 55(518): 2547 doi: 10.1299/kikaic.55.2547
|
[38] |
Zhang R, Wang H, Chen W. Shape control for a soft robot inspired by octopus. Robot, 2016, 38(06): 754
|
[39] |
Wang H S, Zhang R X, Chen W D, et al. Shape detection algorithm for soft manipulator based on fiber Bragg gratings. IEEE/ASME Trans Mechatron, 2016, 21(6): 2977 doi: 10.1109/TMECH.2016.2606491
|
[40] |
Wang H S, Yang B H, Liu Y T, et al. Visual servoing of soft robot manipulator in constrained environments with an adaptive controller. IEEE/ASME Trans Mechatron, 2017, 22(1): 41 doi: 10.1109/TMECH.2016.2613410
|
[41] |
Wang H S, Wang C, Chen W D, et al. Three-dimensional dynamics for cable-driven soft manipulator. IEEE/ASME Trans Mechatron, 2017, 22(1): 18 doi: 10.1109/TMECH.2016.2606547
|
[42] |
Renda F, Giorelli M, Calisti M, et al. Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans Robotics, 2014, 30(5): 1109 doi: 10.1109/TRO.2014.2325992
|
[43] |
Oliver-Butler K, Till J, Rucker C. Continuum robot stiffness under external loads and prescribed tendon displacements. IEEE Trans Robotics, 2019, 35(2): 403 doi: 10.1109/TRO.2018.2885923
|
[44] |
Margheri L, Laschi C, Mazzolai B. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspir Biomim, 2012, 7(2): 025004
|
[45] |
Mazzolai B, Margheri L, Cianchetti M, et al. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspir Biomim, 2012, 7(2): 025005
|
[46] |
Mazzolai B, Margheri L, Dario P, et al. Measurements of octopus arm elongation: Evidence of differences by body size and gender. J Exp Mar Biol Ecol, 2013, 447: 160 doi: 10.1016/j.jembe.2013.02.025
|
[47] |
She Y, Chen J, Shi H L, et al. Modeling and validation of a novel bending actuator for soft robotics applications. Soft Robotics, 2016, 3(2): 71 doi: 10.1089/soro.2015.0022
|
[48] |
Yang L Q, Huang Z P, Ou Z Y, et al. Research and analysis of soft robot control based on SMA. Electron World, 2019(9): 52 doi: 10.19353/j.cnki.dzsj.2019.09.021楊立麒, 黃志鵬, 歐卓煜, 等. 基于SMA的軟體機器人控制研究與分析. 電子世界, 2019(9):52 doi: 10.19353/j.cnki.dzsj.2019.09.021
|
[49] |
Zheng J J, Song X B, Jiang Z H, et al. The driving force mechanism and control strategy of a pneumatic hydrostatic soft robot. Robot, 2014, 36(5): 513鄭俊君, 宋小波, 姜祖輝, 等. 一種氣動靜壓軟體機器人的驅動力產生機理及控制策略. 機器人, 2014, 36(5):513
|
[50] |
Fei Y Q, Pang W, Yu W B. Movement of air-driven soft robot. J Mech Eng, 2017, 53(13): 14 doi: 10.3901/JME.2017.13.014費燕瓊, 龐武, 于文博. 氣壓驅動軟體機器人運動研究. 機械工程學報, 2017, 53(13):14 doi: 10.3901/JME.2017.13.014
|
[51] |
Marchese A D, Komorowski K, Onal C D, et al. Design and control of a soft and continuously deformable 2D robotic manipulation system // 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, 2014: 2189
|
[52] |
Marchese A D, Katzschmann R K, Rus D. Whole arm planning for a soft and highly compliant 2D robotic manipulator // 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014: 554
|
[53] |
Ansari Y, Manti M, Falotico E, et al. Towards the development of a soft manipulator as an assistive robot for personal care of elderly people. Int J Adv Robotic Syst, 2017, 14(2): 1729881416687132
|
[54] |
De Falco I, Cianchetti M, Menciassi A. A soft multi-module manipulator with variable stiffness for minimally invasive surgery. Bioinspir Biomim, 2017, 12(5): 056008 doi: 10.1088/1748-3190/aa7ccd
|
[55] |
Chen G, Wu Y F, Li W, et al. Design and modeling of the soft robot for colonoscopy. J Chongqing Univ Technol Nat Sci, 2020, 34(12): 157陳剛, 鄔元富, 李偉, 等. 面向結腸鏡軟體機器人設計與建模仿真. 重慶理工大學學報(自然科學), 2020, 34(12):157
|
[56] |
He B, Wang Z P, Li Q, et al. An analytic method for the kinematics and dynamics of a multiple-backbone continuum robot. Int J Adv Robotic Syst, 2013, 10(1): 84 doi: 10.5772/54051
|
[57] |
Wang L, Simaan N. Geometric calibration of continuum robots: Joint space and equilibrium shape deviations. IEEE Trans Robotics, 2019, 35(2): 387 doi: 10.1109/TRO.2018.2881049
|
[58] |
George Thuruthel T, Ansari Y, Falotico E, et al. Control strategies for soft robotic manipulators: A survey. Soft Robot, 2018, 5(2): 149 doi: 10.1089/soro.2017.0007
|
[59] |
Wang L, del Giudice G, Simaan N. Simplified kinematics of continuum robot equilibrium modulation via moment coupling effects and model calibration. J Mech Robotics, 2019, 11(5): 051013 doi: 10.1115/1.4044162
|
[60] |
Lunni D, Cianchetti M, Falotico E, et al. A closed loop shape control for bio-inspired soft arms. Biomim Biohybrid Syst, 2017, 10384: 567
|
[61] |
Xavier M S, Fleming A J, Yong Y K. Nonlinear Estimation and Control of Bending Soft Pneumatic Actuators Using Feedback Linearization and UKF. IEEE/ASME Trans Mechatron, 2022, 27(4): 1919 doi: 10.1109/TMECH.2022.3155790
|
[62] |
Yu X J. Kinematics and Dynamics Modeling and Visual Servo Control for Soft Robotic Manipulator [Dissertation]. Shanghai: Shanghai Jiaotong University, 2013俞曉瑾. 柔性機械臂的運動學和動力學建模及視覺伺服控制[學位論文]. 上海: 上海交通大學, 2013
|
[63] |
Webster R J III, Jones B A. Design and kinematic modeling of constant curvature continuum robots: A review. Int J Robotics Res, 2010, 29(13): 1661 doi: 10.1177/0278364910368147
|
[64] |
Xu F, Wang H S. Adaptive robust visual servoing control of a soft manipulator in underwater environment. Acta Automatica Sinica,https://doi.org/10.16383/j.aas.c200457徐璠, 王賀升. 軟體機械臂水下自適應魯棒視覺伺服. 自動化學報,https://doi.org/10.16383/j.aas.c200457
|
[65] |
Liu X, Chen W, Zhu M L, et al. Design and control analysis of underwater software robot arm. Ship Eng, 2020, 42(6): 21 doi: 10.13788/j.cnki.cbgc.2020.06.05劉璇, 陳衛, 朱美龍, 等. 水下軟體機械臂的設計及控制分析. 船舶工程, 2020, 42(6):21 doi: 10.13788/j.cnki.cbgc.2020.06.05
|
[66] |
Han J T, Han Z J, Liu Z J. Adaptive control for a constrained soft manipulator with prescribed performance. IFAC-PapersOnLine, 2020, 53(5): 524 doi: 10.1016/j.ifacol.2021.04.198
|
[67] |
Han J T, Liu Z J, He W. Adaptive neural network control for a soft robotic manipulator // 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS). Guangzhou, 2020: 393
|
[68] |
Li J R, Wang J B, Fei Y Q. Nonlinear modeling on a SMA actuated circular soft robot with closed-loop control system. Nonlinear Dyn, 2019, 96(4): 2627 doi: 10.1007/s11071-019-04949-z
|
[69] |
Laschi C, Cianchetti M, Mazzolai B, et al. Soft robot arm inspired by the octopus. Adv Robotics, 2012, 26(7): 709 doi: 10.1163/156855312X626343
|
[70] |
Yang H, Xu M, Li W H, et al. Design and implementation of a soft robotic arm driven by SMA coils. IEEE Trans Ind Electron, 2019, 66(8): 6108 doi: 10.1109/TIE.2018.2872005
|
[71] |
Copaci D S, Blanco D, Martin-Clemente A, et al. Flexible shape memory alloy actuators for soft robotics: Modelling and control. Int J Adv Robotic Syst, 2020, 17(1): 172988141988674
|
[72] |
Li J F, Pi Y Y. Fuzzy time delay algorithms for position control of soft robot actuated by shape memory alloy. Int J Control Autom Syst, 2021, 19(6): 2203 doi: 10.1007/s12555-018-0313-5
|
[73] |
Sanan S, Lynn P S, Griffith S T. Pneumatic torsional actuators for inflatable robots. J Mech Robotics, 2014, 6(3): 031003 doi: 10.1115/1.4026629
|
[74] |
You X K, Zhang Y X, Chen X T, et al. Model-free control for soft manipulators based on reinforcement learning // 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, 2017: 24
|
[75] |
Wang N Y, Sun H, Jiang H, et al. On grasp strategy of honeycomb PneuNets soft gripper. Robot, 2016, 38(3): 371 doi: 10.13973/j.cnki.robot.2016.0371王寧揚, 孫昊, 姜皓, 等. 一種基于蜂巢氣動網絡的軟體夾持器抓取策略研究. 機器人, 2016, 38(3):371 doi: 10.13973/j.cnki.robot.2016.0371
|
[76] |
Gong Z Y, Xie Z X, Yang X B, et al. Design, fabrication and kinematic modeling of a 3D-motion soft robotic arm // 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). Qingdao, 2016: 509
|
[77] |
Giorelli M, Renda F, Ferri G, et al. A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space // 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, 2013: 5033
|
[78] |
Chattopadhyay S, Bhattacherjee S, Bandyopadhyay S, et al. Control of single-segment continuum robots: Reinforcement learning vs. neural network based PID // 2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT). Kannur, 2018: 222
|
[79] |
Ansari Y, Manti M, Falotico E, et al. Multiobjective optimization for stiffness and position control in a soft robot arm module. IEEE Robotics Autom Lett, 2018, 3(1): 108 doi: 10.1109/LRA.2017.2734247
|
[80] |
Qi P, Liu C, Ataka A, et al. Kinematic control of continuum manipulators using a fuzzy-model-based approach. IEEE Trans Ind Electron, 2016, 63(8): 5022 doi: 10.1109/TIE.2016.2554078
|
[81] |
Jiang S R, Wang Y Y, Ju F, et al. A new fuzzy time-delay control for cable-driven robot. Int J Adv Robotic Syst, 2019, 16(2): 172988141983501
|