<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

軟體機械臂的驅動方式、建模與控制研究進展

楊妍 劉志杰 韓江濤 李擎 賀威

楊妍, 劉志杰, 韓江濤, 李擎, 賀威. 軟體機械臂的驅動方式、建模與控制研究進展[J]. 工程科學學報, 2022, 44(12): 2124-2137. doi: 10.13374/j.issn2095-9389.2021.06.10.001
引用本文: 楊妍, 劉志杰, 韓江濤, 李擎, 賀威. 軟體機械臂的驅動方式、建模與控制研究進展[J]. 工程科學學報, 2022, 44(12): 2124-2137. doi: 10.13374/j.issn2095-9389.2021.06.10.001
YANG Yan, LIU Zhi-jie, HAN jiang-tao, LI Qing, HE Wei. Overview of actuators, modeling, and control methods for soft manipulators[J]. Chinese Journal of Engineering, 2022, 44(12): 2124-2137. doi: 10.13374/j.issn2095-9389.2021.06.10.001
Citation: YANG Yan, LIU Zhi-jie, HAN jiang-tao, LI Qing, HE Wei. Overview of actuators, modeling, and control methods for soft manipulators[J]. Chinese Journal of Engineering, 2022, 44(12): 2124-2137. doi: 10.13374/j.issn2095-9389.2021.06.10.001

軟體機械臂的驅動方式、建模與控制研究進展

doi: 10.13374/j.issn2095-9389.2021.06.10.001
基金項目: 國家自然科學基金資助項目(62073030, 62103039)
詳細信息
    通訊作者:

    E-mail: liqing@ies.ustb.edu.cn

  • 中圖分類號: TG142.71

Overview of actuators, modeling, and control methods for soft manipulators

More Information
  • 摘要: 軟體機械臂是一個新的機器人分支,不同于剛性機械臂,它完全由柔軟的材料打造,可以完成剛性機械臂無法完成的任務,比如非結構環境下探測,易碎物品的抓取,更安全的人機協作等等。目前許多國家正在投入到軟體機械臂的研究當中,研究者設計出形狀與功能都不盡相同的軟體機械臂,從制作材料的多樣性到驅動方式的多樣性,再從建模方式的多樣性到控制方式的多樣性,無不展示出軟體機械臂的獨特性。由于任務目的的不同,軟體機械臂的驅動方式有所不同,本文首先研究三種主流的軟體機械臂驅動方式——繩索驅動(Tendon驅動)、形狀記憶合金驅動(SMA驅動)、氣動驅動(Pneumatic驅動),然后由此展開,分別研究軟體機械臂在不同驅動方式下的建模方式和控制方法。最后從驅動方式,建模方法和控制方法三個方面對軟體機械臂的發展趨勢進行總結展望。

     

  • 圖  1  仿章魚機械臂實驗驗證原型[42]

    Figure  1.  Experimental validation prototype of an octopus-like robotic arm[42]

    圖  2  田納西大學諾克斯維爾分校軟體機械臂[43]. (a) 機械臂90°彎曲; (b) 機械臂尖端0.9 N負載

    Figure  2.  Tendon-driven robotic arm by the University of Tennessee, Knoxville[43]: (a) 90° bending of the manipulator; (b) 0.9 N load at the tip of the robotic arm

    圖  3  軟體機械臂不同形態[47]. (a) 筆直形; (b) s形; (c)螺旋形; (d)圓形

    Figure  3.  Different forms of flexible robotic arms[47]: (a) straight; (b) s-shaped; (c) spiral; (d) round

    圖  4  廣州大學SMA驅動軟體機械臂原型[48]

    Figure  4.  SMA-driven robotic arm prototype by Guangzhou University[48]

    圖  5  圣安娜大學人體輔助氣動機械臂[53].(a)機械臂活動空間范圍; (b)視覺伺服測試系統

    Figure  5.  Human-assisted pneumatic arm by Sainte-Anne University[53]: (a) range of arm movement space; (b) visual servo test system

    圖  6  圣安娜高等學校手術輔助軟體機械臂原型[54]

    Figure  6.  Surgical-assisted pneumatic arm by Sainte-Anne University[54]

    圖  7  軟體機械臂空間移動和抓取實驗[54]

    Figure  7.  Robotic arm space movement and grasping experiment[54]

    圖  8  軟體機械臂實驗平臺[55]

    Figure  8.  Experimental platform of the soft robot[55]

    圖  9  上海交通大學繩索驅動軟體機械臂內部結構圖[62]

    Figure  9.  Internal structure of the tendon-driven soft robot arm by Shanghai Jiao Tong University[62]

    圖  10  上海交通大學軟體機械臂[64]

    Figure  10.  Underwater robotic arm by Shanghai Jiaotong University[64]

    圖  11  上海海洋大學軟體機械臂[65]. (a) 萬向聯軸器結構;(b) 彎曲實驗

    Figure  11.  Underwater robotic arm by Shanghai Ocean University[65]: (a) structure of universal coupling; (b) bending test

    圖  12  圣安娜大學仿章魚軟體機械臂[69]. (a)靜止狀態; (b)抓握狀態; (c)間隔500 ms運動狀態記錄

    Figure  12.  Soft-body robotic arm imitating an octopus by Sainte-Anne University[69]: (a) stationary state; (b) grasping state; (c) movement state recording at 500 ms intervals

    圖  13  中國科學技術大學張世武團隊軟體機械臂[70]. (a)機械臂構成; (b)機械臂內部幾何關系; (c)霍爾元件測量位移

    Figure  13.  SMA-driven robotic arm by the University of Science and Technology of China[70]: (a) mechanical arm composition; (b) internal geometrical relationship of the mechanical arm; (c) Hall element measuring displacement

    圖  14  軟體機械臂彎曲運動測試[70]. (a) 一維彎曲運動; (b) 二維圓周運動

    Figure  14.  Robotic arm bending motion test[70]: (a) one-dimensional bending motion; (b) two-dimensional circular motion

    圖  15  柔性SMA驅動器[71]

    Figure  15.  Flexible SMA-based actuator. SMA: shape memory alloy[71]

    圖  16  中國科學技術大學蜂巢氣動網絡機械臂[75]

    Figure  16.  Honeycomb pneumatic network arm by the University of Science and Technology of China[75]

    圖  17  北京航空航天大學硅膠氣動機械臂[76]. (a)機械臂內部構造; (b)機械臂坐標系定義; (c) 機械臂內部三個氣動腔體的幾何關系

    Figure  17.  Silicone pneumatic robotic arm by Beihang University[76]: (a) internal structure of robotic arm; (b) definition of robotic arm coordinate system; (c) geometry of the three pneumatic chambers inside the robotic arm

    圖  18  硅膠氣動機械臂不同驅動氣壓下機械臂實際形變與理論形變的對比[76]

    Figure  18.  Comparison of the actual and theoretical deformation of the silicone pneumatic arm at different drive air pressures[76]

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang T M, Hao Y F, Yang X B, et al. Soft robotics: structure, actuation, sensing and control. J Mech Eng, 2017, 53(13): 1 doi: 10.3901/JME.2017.13.001

    王田苗, 郝雨飛, 楊興幫, 等. 軟體機器人: 結構、驅動、傳感與控制. 機械工程學報, 2017, 53(13):1 doi: 10.3901/JME.2017.13.001
    [2] He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Autom Sin, 2017, 43(5): 685

    賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685
    [3] Grissom M D, Chitrakaran V, Dienno D, et al. Design and experimental testing of the OctArm soft robot manipulator // Proceedings of SPIE, Unmanned Systems Technology VIII. Orlando, 2006, 6230: 491
    [4] Neppalli S, Jones B, McMahan W, et al. OctArm - A soft robotic manipulator // 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, 2007: 2569
    [5] Kier W M, Stella M P. The arrangement and function of octopus arm musculature and connective tissue. J Morphol, 2007, 268(10): 831 doi: 10.1002/jmor.10548
    [6] Sumbre G, Fiorito G, Flash T, et al. Motor control of flexible octopus arms. Nature, 2005, 433(7026): 595 doi: 10.1038/433595a
    [7] Cianchetti M, Arienti A, Follador M, et al. Design concept and validation of a robotic arm inspired by the octopus. Mater Sci Eng C, 2011, 31(6): 1230 doi: 10.1016/j.msec.2010.12.004
    [8] Li T F, Li G R, Liang Y M, et al. Review of materials and structures in soft robotics. Chin J Theor Appl Mech, 2016, 48(4): 756 doi: 10.6052/0459-1879-16-159

    李鐵風, 李國瑞, 梁藝鳴, 等. 軟體機器人結構機理與驅動材料研究綜述. 力學學報, 2016, 48(4):756 doi: 10.6052/0459-1879-16-159
    [9] Chen G, Pham M T, Redarce T. A semi-autonomous micro-robotic system for Colonoscopy // IEEE International Conference on Robotics and Biomimetics. Bangkok, 2009: 703
    [10] Cianchetti M, Ranzani T, Gerboni G, et al. Soft robotics technologies to address shortcomings in today's minimally invasive surgery: The STIFF-FLOP approach. Soft Robotics, 2014, 1(2): 122 doi: 10.1089/soro.2014.0001
    [11] Deng T, Wang H S, Chen W D, et al. Development of a new cable-driven soft robot for cardiac ablation // Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO). Shenzhen, 2013: 728
    [12] Hawkes E W, Blumenschein L H, Greer J D, et al. A soft robot that navigates its environment through growth. Sci Robot, 2017, 2(8): eaan3028 doi: 10.1126/scirobotics.aan3028
    [13] Amend J R, Brown E, Rodenberg N, et al. A positive pressure universal gripper based on the jamming of granular material. IEEE Trans Robotics, 2012, 28(2): 341 doi: 10.1109/TRO.2011.2171093
    [14] Roche E T, Wohlfarth R, Overvelde J T B, et al. A bioinspired soft actuated material. Adv Mater, 2014, 26(8): 1200 doi: 10.1002/adma.201304018
    [15] Hao Y F, Gong Z Y, Xie Z X, et al. Universal soft pneumatic robotic gripper with variable effective length //35th Chinese control conference (CCC). Chengdu, 2016: 6109
    [16] Trivedi D, Lotfi A, Rahn C D. Geometrically exact models for soft robotic manipulators. IEEE Trans Robotics, 2008, 24(4): 773 doi: 10.1109/TRO.2008.924923
    [17] Kapadia A, Walker I D. Task-space control of extensible continuum manipulators // 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, 2011: 1087
    [18] Kapadia A D, Fry K E, Walker I D. Empirical investigation of closed-loop control of extensible continuum manipulators // 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014: 329
    [19] Falkenhahn V, Hildebrandt A, Sawodny O. Trajectory optimization of pneumatically actuated, redundant continuum manipulators // 2014 American Control Conference. Portland, 2014: 4008
    [20] Marchese A D, Tedrake R, Rus D. Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator. Int J Robotics Res, 2016, 35(8): 1000 doi: 10.1177/0278364915587926
    [21] Santina C D, Rus D. Control oriented modeling of soft robots: The polynomial curvature case. IEEE Robotics Autom Lett, 2019, 5(2): 290
    [22] Santina C D, Bicchi A, Rus D. On an improved state parametrization for soft robots with piecewise constant curvature and its use in model based control. IEEE Robotics Autom Lett, 2020, 5(2): 1001 doi: 10.1109/LRA.2020.2967269
    [23] Shepherd R F, Ilievski F, Choi W, et al. Multigait soft robot. PNAS, 2011, 108(51): 20400 doi: 10.1073/pnas.1116564108
    [24] Ilievski F, Mazzeo A D, Shepherd R F, et al. Soft robotics for chemists. Angew Chem Int Ed, 2011, 50(8): 1890 doi: 10.1002/anie.201006464
    [25] Martinez R V, Branch J L, Fish C R, et al. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv Mater, 2013, 25(2): 205 doi: 10.1002/adma.201203002
    [26] Martinez R V, Glavan A C, Keplinger C, et al. Soft actuators and robots that are resistant to mechanical damage. Adv Funct Mater, 2014, 24(20): 3003 doi: 10.1002/adfm.201303676
    [27] Martinez R V, Fish C R, Chen X, et al. Elastomeric origami: Programmable paper-elastomer composites as pneumatic actuators. Adv Funct Mater, 2012, 22(7): 1376 doi: 10.1002/adfm.201102978
    [28] Lin H T, Leisk G G, Trimmer B. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir Biomim, 2011, 6(2): 026007 doi: 10.1088/1748-3182/6/2/026007
    [29] Kim H J, Song S H, Ahn S H. A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Mater Struct, 2013, 22(1): 014007 doi: 10.1088/0964-1726/22/1/014007
    [30] Song S H, Kim M S, Rodrigue H, et al. Turtle mimetic soft robot with two swimming gaits. Bioinspir Biomim, 2016, 11(3): 036010 doi: 10.1088/1748-3190/11/3/036010
    [31] Wang Z L, Hang G R, Wang Y W, et al. Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion. Smart Mater Struct, 2008, 17(2): 025039 doi: 10.1088/0964-1726/17/2/025039
    [32] Villanueva A, Smith C, Priya S. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir Biomim, 2011, 6(3): 036004 doi: 10.1088/1748-3182/6/3/036004
    [33] Colorado J, Barrientos A, Rossi C, et al. Biomechanics of smart wings in a bat robot: Morphing wings using SMA actuators. Bioinspir Biomim, 2012, 7(3): 036006 doi: 10.1088/1748-3182/7/3/036006
    [34] Tadesse Y, Hong D, Priya S. Twelve degree of freedom baby humanoid head using shape memory alloy actuators. J Mech Robotics, 2011, 3(1): 011008 doi: 10.1115/1.4003005
    [35] Shepherd R F, Stokes A A, Freake J, et al. Using explosions to power a soft robot. Angew Chem Int Ed, 2013, 52(10): 2892 doi: 10.1002/anie.201209540
    [36] Bartlett N W, Tolley M T, Overvelde J T B, et al. A 3D-printed, functionally graded soft robot powered by combustion. Science, 2015, 349(6244): 161 doi: 10.1126/science.aab0129
    [37] Suzumori K. Flexible microactuator: 1st Report, Static characteristics of 3 DOF actuator. Trans JSME(C), 1989, 55(518): 2547 doi: 10.1299/kikaic.55.2547
    [38] Zhang R, Wang H, Chen W. Shape control for a soft robot inspired by octopus. Robot, 2016, 38(06): 754
    [39] Wang H S, Zhang R X, Chen W D, et al. Shape detection algorithm for soft manipulator based on fiber Bragg gratings. IEEE/ASME Trans Mechatron, 2016, 21(6): 2977 doi: 10.1109/TMECH.2016.2606491
    [40] Wang H S, Yang B H, Liu Y T, et al. Visual servoing of soft robot manipulator in constrained environments with an adaptive controller. IEEE/ASME Trans Mechatron, 2017, 22(1): 41 doi: 10.1109/TMECH.2016.2613410
    [41] Wang H S, Wang C, Chen W D, et al. Three-dimensional dynamics for cable-driven soft manipulator. IEEE/ASME Trans Mechatron, 2017, 22(1): 18 doi: 10.1109/TMECH.2016.2606547
    [42] Renda F, Giorelli M, Calisti M, et al. Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans Robotics, 2014, 30(5): 1109 doi: 10.1109/TRO.2014.2325992
    [43] Oliver-Butler K, Till J, Rucker C. Continuum robot stiffness under external loads and prescribed tendon displacements. IEEE Trans Robotics, 2019, 35(2): 403 doi: 10.1109/TRO.2018.2885923
    [44] Margheri L, Laschi C, Mazzolai B. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspir Biomim, 2012, 7(2): 025004
    [45] Mazzolai B, Margheri L, Cianchetti M, et al. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspir Biomim, 2012, 7(2): 025005
    [46] Mazzolai B, Margheri L, Dario P, et al. Measurements of octopus arm elongation: Evidence of differences by body size and gender. J Exp Mar Biol Ecol, 2013, 447: 160 doi: 10.1016/j.jembe.2013.02.025
    [47] She Y, Chen J, Shi H L, et al. Modeling and validation of a novel bending actuator for soft robotics applications. Soft Robotics, 2016, 3(2): 71 doi: 10.1089/soro.2015.0022
    [48] Yang L Q, Huang Z P, Ou Z Y, et al. Research and analysis of soft robot control based on SMA. Electron World, 2019(9): 52 doi: 10.19353/j.cnki.dzsj.2019.09.021

    楊立麒, 黃志鵬, 歐卓煜, 等. 基于SMA的軟體機器人控制研究與分析. 電子世界, 2019(9):52 doi: 10.19353/j.cnki.dzsj.2019.09.021
    [49] Zheng J J, Song X B, Jiang Z H, et al. The driving force mechanism and control strategy of a pneumatic hydrostatic soft robot. Robot, 2014, 36(5): 513

    鄭俊君, 宋小波, 姜祖輝, 等. 一種氣動靜壓軟體機器人的驅動力產生機理及控制策略. 機器人, 2014, 36(5):513
    [50] Fei Y Q, Pang W, Yu W B. Movement of air-driven soft robot. J Mech Eng, 2017, 53(13): 14 doi: 10.3901/JME.2017.13.014

    費燕瓊, 龐武, 于文博. 氣壓驅動軟體機器人運動研究. 機械工程學報, 2017, 53(13):14 doi: 10.3901/JME.2017.13.014
    [51] Marchese A D, Komorowski K, Onal C D, et al. Design and control of a soft and continuously deformable 2D robotic manipulation system // 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, 2014: 2189
    [52] Marchese A D, Katzschmann R K, Rus D. Whole arm planning for a soft and highly compliant 2D robotic manipulator // 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014: 554
    [53] Ansari Y, Manti M, Falotico E, et al. Towards the development of a soft manipulator as an assistive robot for personal care of elderly people. Int J Adv Robotic Syst, 2017, 14(2): 1729881416687132
    [54] De Falco I, Cianchetti M, Menciassi A. A soft multi-module manipulator with variable stiffness for minimally invasive surgery. Bioinspir Biomim, 2017, 12(5): 056008 doi: 10.1088/1748-3190/aa7ccd
    [55] Chen G, Wu Y F, Li W, et al. Design and modeling of the soft robot for colonoscopy. J Chongqing Univ Technol Nat Sci, 2020, 34(12): 157

    陳剛, 鄔元富, 李偉, 等. 面向結腸鏡軟體機器人設計與建模仿真. 重慶理工大學學報(自然科學), 2020, 34(12):157
    [56] He B, Wang Z P, Li Q, et al. An analytic method for the kinematics and dynamics of a multiple-backbone continuum robot. Int J Adv Robotic Syst, 2013, 10(1): 84 doi: 10.5772/54051
    [57] Wang L, Simaan N. Geometric calibration of continuum robots: Joint space and equilibrium shape deviations. IEEE Trans Robotics, 2019, 35(2): 387 doi: 10.1109/TRO.2018.2881049
    [58] George Thuruthel T, Ansari Y, Falotico E, et al. Control strategies for soft robotic manipulators: A survey. Soft Robot, 2018, 5(2): 149 doi: 10.1089/soro.2017.0007
    [59] Wang L, del Giudice G, Simaan N. Simplified kinematics of continuum robot equilibrium modulation via moment coupling effects and model calibration. J Mech Robotics, 2019, 11(5): 051013 doi: 10.1115/1.4044162
    [60] Lunni D, Cianchetti M, Falotico E, et al. A closed loop shape control for bio-inspired soft arms. Biomim Biohybrid Syst, 2017, 10384: 567
    [61] Xavier M S, Fleming A J, Yong Y K. Nonlinear Estimation and Control of Bending Soft Pneumatic Actuators Using Feedback Linearization and UKF. IEEE/ASME Trans Mechatron, 2022, 27(4): 1919 doi: 10.1109/TMECH.2022.3155790
    [62] Yu X J. Kinematics and Dynamics Modeling and Visual Servo Control for Soft Robotic Manipulator [Dissertation]. Shanghai: Shanghai Jiaotong University, 2013

    俞曉瑾. 柔性機械臂的運動學和動力學建模及視覺伺服控制[學位論文]. 上海: 上海交通大學, 2013
    [63] Webster R J III, Jones B A. Design and kinematic modeling of constant curvature continuum robots: A review. Int J Robotics Res, 2010, 29(13): 1661 doi: 10.1177/0278364910368147
    [64] Xu F, Wang H S. Adaptive robust visual servoing control of a soft manipulator in underwater environment. Acta Automatica Sinica,https://doi.org/10.16383/j.aas.c200457

    徐璠, 王賀升. 軟體機械臂水下自適應魯棒視覺伺服. 自動化學報,https://doi.org/10.16383/j.aas.c200457
    [65] Liu X, Chen W, Zhu M L, et al. Design and control analysis of underwater software robot arm. Ship Eng, 2020, 42(6): 21 doi: 10.13788/j.cnki.cbgc.2020.06.05

    劉璇, 陳衛, 朱美龍, 等. 水下軟體機械臂的設計及控制分析. 船舶工程, 2020, 42(6):21 doi: 10.13788/j.cnki.cbgc.2020.06.05
    [66] Han J T, Han Z J, Liu Z J. Adaptive control for a constrained soft manipulator with prescribed performance. IFAC-PapersOnLine, 2020, 53(5): 524 doi: 10.1016/j.ifacol.2021.04.198
    [67] Han J T, Liu Z J, He W. Adaptive neural network control for a soft robotic manipulator // 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS). Guangzhou, 2020: 393
    [68] Li J R, Wang J B, Fei Y Q. Nonlinear modeling on a SMA actuated circular soft robot with closed-loop control system. Nonlinear Dyn, 2019, 96(4): 2627 doi: 10.1007/s11071-019-04949-z
    [69] Laschi C, Cianchetti M, Mazzolai B, et al. Soft robot arm inspired by the octopus. Adv Robotics, 2012, 26(7): 709 doi: 10.1163/156855312X626343
    [70] Yang H, Xu M, Li W H, et al. Design and implementation of a soft robotic arm driven by SMA coils. IEEE Trans Ind Electron, 2019, 66(8): 6108 doi: 10.1109/TIE.2018.2872005
    [71] Copaci D S, Blanco D, Martin-Clemente A, et al. Flexible shape memory alloy actuators for soft robotics: Modelling and control. Int J Adv Robotic Syst, 2020, 17(1): 172988141988674
    [72] Li J F, Pi Y Y. Fuzzy time delay algorithms for position control of soft robot actuated by shape memory alloy. Int J Control Autom Syst, 2021, 19(6): 2203 doi: 10.1007/s12555-018-0313-5
    [73] Sanan S, Lynn P S, Griffith S T. Pneumatic torsional actuators for inflatable robots. J Mech Robotics, 2014, 6(3): 031003 doi: 10.1115/1.4026629
    [74] You X K, Zhang Y X, Chen X T, et al. Model-free control for soft manipulators based on reinforcement learning // 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, 2017: 24
    [75] Wang N Y, Sun H, Jiang H, et al. On grasp strategy of honeycomb PneuNets soft gripper. Robot, 2016, 38(3): 371 doi: 10.13973/j.cnki.robot.2016.0371

    王寧揚, 孫昊, 姜皓, 等. 一種基于蜂巢氣動網絡的軟體夾持器抓取策略研究. 機器人, 2016, 38(3):371 doi: 10.13973/j.cnki.robot.2016.0371
    [76] Gong Z Y, Xie Z X, Yang X B, et al. Design, fabrication and kinematic modeling of a 3D-motion soft robotic arm // 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). Qingdao, 2016: 509
    [77] Giorelli M, Renda F, Ferri G, et al. A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space // 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, 2013: 5033
    [78] Chattopadhyay S, Bhattacherjee S, Bandyopadhyay S, et al. Control of single-segment continuum robots: Reinforcement learning vs. neural network based PID // 2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT). Kannur, 2018: 222
    [79] Ansari Y, Manti M, Falotico E, et al. Multiobjective optimization for stiffness and position control in a soft robot arm module. IEEE Robotics Autom Lett, 2018, 3(1): 108 doi: 10.1109/LRA.2017.2734247
    [80] Qi P, Liu C, Ataka A, et al. Kinematic control of continuum manipulators using a fuzzy-model-based approach. IEEE Trans Ind Electron, 2016, 63(8): 5022 doi: 10.1109/TIE.2016.2554078
    [81] Jiang S R, Wang Y Y, Ju F, et al. A new fuzzy time-delay control for cable-driven robot. Int J Adv Robotic Syst, 2019, 16(2): 172988141983501
  • 加載中
圖(18)
計量
  • 文章訪問數:  941
  • HTML全文瀏覽量:  694
  • PDF下載量:  160
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-06-10
  • 網絡出版日期:  2021-08-03
  • 刊出日期:  2022-12-01

目錄

    /

    返回文章
    返回