<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于機器學習的邊坡安全穩定性評價及防護措施

武夢婷 陳秋松 齊沖沖

武夢婷, 陳秋松, 齊沖沖. 基于機器學習的邊坡安全穩定性評價及防護措施[J]. 工程科學學報, 2022, 44(2): 180-188. doi: 10.13374/j.issn2095-9389.2021.06.02.008
引用本文: 武夢婷, 陳秋松, 齊沖沖. 基于機器學習的邊坡安全穩定性評價及防護措施[J]. 工程科學學報, 2022, 44(2): 180-188. doi: 10.13374/j.issn2095-9389.2021.06.02.008
WU Meng-ting, CHEN Qiu-song, QI Chong-chong. Slope safety, stability evaluation, and protective measures based on machine learning[J]. Chinese Journal of Engineering, 2022, 44(2): 180-188. doi: 10.13374/j.issn2095-9389.2021.06.02.008
Citation: WU Meng-ting, CHEN Qiu-song, QI Chong-chong. Slope safety, stability evaluation, and protective measures based on machine learning[J]. Chinese Journal of Engineering, 2022, 44(2): 180-188. doi: 10.13374/j.issn2095-9389.2021.06.02.008

基于機器學習的邊坡安全穩定性評價及防護措施

doi: 10.13374/j.issn2095-9389.2021.06.02.008
基金項目: 中央高校基本科研業務費專項資金資助項目(202045009);國家自然科學基金資助項目(52074351)
詳細信息
    通訊作者:

    E-mail: chongchong.qi@csu.edu.cn

  • 中圖分類號: X936

Slope safety, stability evaluation, and protective measures based on machine learning

More Information
  • 摘要: 為了更加快捷、高效地判定邊坡穩定與否,基于機器學習,融合主成分分析法(PCA)、參數調整、影響因素權重分析等,建立了一種邊坡安全穩定性評價體系。研究發現,運用PCA可以在保留80%數據原信息的前提下將輸入變量維度從六維降至三維,但此時模型效果有所下降;隨機森林及梯度提升(XGBoost) 兩種學習算法均可搭建有效的邊坡安全穩定性評估模型,通過對其預測效果的對比分析,確定XGBoost為最佳評價模型。與此同時,采取卡方檢驗、F檢驗以及互信息法3種相關性檢驗手段,并通過計算評價因子的重要程度且加以可視化展示,明確了容重、坡高、內摩擦角以及內聚力4個內在因素的重要性,最終將評估結果與實際結合提出了邊坡安全防護措施。

     

  • 圖  1  影響因素的特征統計。(a)坡高分布;(b)坡角分布;(c)孔隙壓力比分布;(d)容重分布;(e)內聚力分布;(f)內摩擦角分布

    Figure  1.  Characteristic statistics of influencing factors: (a) distribution of slope height; (b) slope angle distribution; (c) pore pressure ratio distribution; (d) unit weight distribution; (e) distribution of cohesion; (f) internal friction angle distribution

    圖  2  累積可解釋方差貢獻率曲線

    Figure  2.  Cumulative explanatory variance contribution curve

    圖  3  降維后的模型表現。(a)隨機森林模型;(b)XGBoost模型

    Figure  3.  Model performance after dimensionality reduction: (a) random forest model; (b) XGBoost model

    圖  4  訓練集和驗證集的結果對比。(a)隨機森林模型;(b)XGBoost模型

    Figure  4.  Comparison of the results between the training set and the verification set: (a) random forest model; (b) XGBoost model

    圖  5  測試集的10次預測準確率

    Figure  5.  Ten times prediction accuracy of the test set using random forest and XGBoost models

    圖  6  調整后的ROC與AUC展示。(a)隨機森林模型;(b)XGBoost模型

    Figure  6.  ROC and AUC display after adjustment: (a) random forest model; (b) XGBoost model

    圖  7  特征重要性排序。(a)隨機森林模型;(b)XGBoost模型

    Figure  7.  Rank of feature importance: (a) Random forest model; (b) XGBoost model

    表  1  兩種算法評估結果差異表

    Table  1.   Different evaluation results obtained from the two algorithms

    IndicatorsRandom forestXGBoost
    Accuracy0.860.92
    Precision0.900.91
    Recall0.850.96
    AUC0.920.95
    下載: 導出CSV

    表  2  三種特征選擇方法下的評價因子重要性

    Table  2.   Importance of evaluation factors under the three feature selection methods

    Feature selection methodImportant evaluation factors and corresponding index scores
    Slope heightUnit weightInternal friction angle
    Chi-square (${\chi ^2}$) test${\chi ^2}$=6.9396 P=0.0084${\chi ^2}$=3.5136 P= 0.0609${\chi ^2}$=2.5307 P =0.1117
    F testF =22.5560 P =0.00000441F=49.7141 P=0F =34.8498 P=0.00000002
    Mutual information method0.23540.21730.2791 (Cohesion)
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Thai Pham B, Tien Bui D, Prakash I. Landslide susceptibility modelling using different advanced decision trees methods. Civ Eng Environ Syst, 2018, 35(1-4): 139 doi: 10.1080/10286608.2019.1568418
    [2] Balogun A L, Rezaie F, Pham Q B, et al. Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms. Geosci Front, 2021, 12(3): 101104 doi: 10.1016/j.gsf.2020.10.009
    [3] Peethambaran B, Anbalagan R, Kanungo D P, et al. A comparative evaluation of supervised machine learning algorithms for township level landslide susceptibility zonation in parts of Indian Himalayas. CATENA, 2020, 195: 104751 doi: 10.1016/j.catena.2020.104751
    [4] Samui P. Slope stability analysis: A support vector machine approach. Environ Geol, 2008, 56(2): 255 doi: 10.1007/s00254-007-1161-4
    [5] Jiang S H, Liu Y, Zhang H L, et al. Quantitatively evaluating the effects of prior probability distribution and likelihood function models on slope reliability assessment. Rock Soil Mech, 2020, 41(9): 3087

    蔣水華, 劉源, 章浩龍, 等. 先驗概率分布及似然函數模型的選擇對邊坡可靠度評價影響的定量評估. 巖土力學, 2020, 41(9):3087
    [6] Neuland H. A prediction model of landslips. CATENA, 1976, 3(2): 215 doi: 10.1016/0341-8162(76)90011-4
    [7] Pradhan B, Lee S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Software, 2010, 25(6): 747 doi: 10.1016/j.envsoft.2009.10.016
    [8] Alavi A H, Gandomi A H. A robust data mining approach for formulation of geotechnical engineering systems. Eng Comput, 2011, 28(3): 242 doi: 10.1108/02644401111118132
    [9] Martins F F, Miranda T F S. Application of data mining techniques to the safety evaluation of slopes // Information Technology in Geo-Engineering: Proceedings of the 1st International Conference (ICITG). Shanghai, 2010: 84
    [10] Zhao H B. Reliability analysis of slope based on support vector machine. Chin J Geotech Eng, 2007, 29(6): 819 doi: 10.3321/j.issn:1000-4548.2007.06.005

    趙洪波. 基于支持向量機的邊坡可靠性分析. 巖土工程學報, 2007, 29(6):819 doi: 10.3321/j.issn:1000-4548.2007.06.005
    [11] Chen S P. Genetic Algorithm and Program Design for Reliability Analysis of Soil Slope Stability [Dissertation]. Changsha: Central South University, 2008

    陳善攀. 土質邊坡穩定可靠度分析遺傳算法方法及程序設計[學位論文]. 長沙: 中南大學, 2008
    [12] Gou Q Q, Zhao M S, Chi E A, et al. Prediction and application of evaluation factors in blasting vibration based on PCA-BP neural network. Min Res Dev, 2018, 38(12): 97

    茍倩倩, 趙明生, 池恩安, 等. 基于PCA-BP神經網絡在爆破振動評價要素中的預測及應用. 礦業研究與開發, 2018, 38(12):97
    [13] Lin H M, Du Z F. Some problems in comprehensive evaluation in the principal component analysis. Stat Res, 2013, 30(8): 25 doi: 10.3969/j.issn.1002-4565.2013.08.004

    林海明, 杜子芳. 主成分分析綜合評價應該注意的問題. 統計研究, 2013, 30(8):25 doi: 10.3969/j.issn.1002-4565.2013.08.004
    [14] Chen G F, Lu Y F, Cheng S G. Principal component analysis of influence factors of slope stability. Met Mine, 2008(4): 123 doi: 10.3321/j.issn:1001-1250.2008.04.034

    陳高峰, 盧應發, 程圣國. 邊坡穩定性影響因素主成分分析. 金屬礦山, 2008(4):123 doi: 10.3321/j.issn:1001-1250.2008.04.034
    [15] Mao Y K. Stability Evaluation of Landslide Based on Machine Learning and System Development [Dissertation]. Chengdu: University of Electronic Science and Technology of China, 2020

    毛宇昆. 基于機器學習的滑坡穩定性評價及系統研發[學位論文]. 成都: 電子科技大學, 2020
    [16] Qi C C, Tang X L. Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study. Comput Ind Eng, 2018, 118: 112 doi: 10.1016/j.cie.2018.02.028
    [17] Zhang Y F, Lu Z Q. Remaining useful life prediction based on an integrated neural network. Chin J Eng, 2020, 42(10): 1372

    張永峰, 陸志強. 基于集成神經網絡的剩余壽命預測. 工程科學學報, 2020, 42(10):1372
    [18] Cong M, Wu T, Liu D, et al. Prostate MR/TRUS image segmentation and registration methods based on supervised learning. Chin J Eng, 2020, 42(10): 1362

    叢明, 吳童, 劉冬, 等. 基于監督學習的前列腺MR/TRUS圖像分割和配準方法. 工程科學學報, 2020, 42(10):1362
    [19] Li J H, Wang F. Study on the forecasting models of slope stability under data mining // Proceedings of the Workshop on Biennial International Conference on Engineering. Honolulu, 2010: 765
    [20] Lu P, Rosenbaum M S. Artificial neural networks and grey systems for the prediction of slope stability. Nat Hazards, 2003, 30(3): 383 doi: 10.1023/B:NHAZ.0000007168.00673.27
    [21] Sah N K, Sheorey P R, Upadhyaya L N. Maximum likelihood estimation of slope stability. Int J Rock Mech Min Sci Geomech Abstr, 1994, 31(1): 47 doi: 10.1016/0148-9062(94)92314-0
    [22] Yan X M, Li X B. Bayes discriminant analysis method for predicting the stability of open pit slope // 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). Lushan, 2011: 147
    [23] Zhou K P, Chen Z Q. Stability prediction of tailing dam slope based on neural network pattern recognition // 2009 Second International Conference on Environmental and Computer Science. Dubai, 2009: 380
    [24] Fan Q. Rapid Evaluation Method Research of Rock Slope Stability for Highway Based on Machine Learning Process [Dissertation]. Chengdu: Chengdu University of Technology, 2019

    樊奇. 基于機器學習全流程的高速公路巖質邊坡穩定性快速評價方法研究[學位論文]. 成都: 成都理工大學, 2019
    [25] Wu S, Liu L, Lu D. Imbalanced data ensemble classification based on cluster-based under-sampling algorithm. Chin J Eng, 2017, 39(8): 1244

    武森, 劉露, 盧丹. 基于聚類欠采樣的集成不均衡數據分類算法. 工程科學學報, 2017, 39(8):1244
    [26] Luo S L, Wan W, Tang J Z, et al. Numerical study of factors influencing slope stability. Miner Eng Res, 2016, 31(4): 37

    羅世林, 萬文, 唐勁舟, 等. 影響邊坡穩定性因素數值研究. 礦業工程研究, 2016, 31(4):37
    [27] Xiao D S. Quantitative theory of slope shear strength increased by vegetation. Sichuan Archit, 2004, 24(1): 63 doi: 10.3969/j.issn.1007-8983.2004.01.030

    肖東升. 植被增加邊坡抗剪強度的量化理論. 四川建筑, 2004, 24(1):63 doi: 10.3969/j.issn.1007-8983.2004.01.030
    [28] Xu W Z, Peng Z B, Yuan H P. Characteristic analysis of bolting grouting reinforcement in jointed and fractured slope. Hydrogeol Eng Geol, 2006, 33(5): 30 doi: 10.3969/j.issn.1000-3665.2006.05.007

    許萬忠, 彭振斌, 袁海平. 節理裂隙邊坡錨注加固機制及特性研究. 水文地質工程地質, 2006, 33(5):30 doi: 10.3969/j.issn.1000-3665.2006.05.007
    [29] Zheng K H, Luo Z Q, Luo C Y, et al. Layered gravel soil slope stability of a waste dump considering long-term hard rain. Chin J Eng, 2016, 38(9): 1204

    鄭開歡, 羅周全, 羅成彥, 等. 持續暴雨作用下排土場層狀碎石土邊坡穩定性. 工程科學學報, 2016, 38(9):1204
  • 加載中
圖(7) / 表(2)
計量
  • 文章訪問數:  703
  • HTML全文瀏覽量:  308
  • PDF下載量:  96
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-06-02
  • 網絡出版日期:  2021-08-12
  • 刊出日期:  2022-02-15

目錄

    /

    返回文章
    返回