-
摘要: 針對千米深井下伏煤層回采需保證上覆巷道穩定性的問題,通過理論分析、數值模擬和現場實測的方法,研究了下伏煤層開采過程中上覆巖層巷道變形破壞類型、破壞機理和防治辦法。通過對開采條件和開采形成的覆巖空間結構的研究,得到了走向和傾向方向上的巷道變形破壞規律;通過研究下伏工作面不同開采階段、不同充填率條件對上覆巷道的采動影響,得到了巷道變形破壞的應力演化規律。結果表明:千米深井下伏煤層開采,上覆巷道潛在的變形破壞類型主要有兩種,一是巷道斷面縮減型破壞,二是巷道走向階梯下沉型破壞。上覆巷道變形破壞的根本原因是大埋深、強采動應力,特別是下伏煤層距上覆巷道較近且距離不均等的影響,直接原因是采動造成的巷道圍巖應力突增及關鍵巖層的破斷下沉。開采過程中,工作面走向開采范圍超過400 m時,巷道斷面縮減型破壞和走向階梯下沉型破壞會相互疊加,誘發更大的巷道破壞。為控制這兩種巷道的潛在破壞類型,設計了沿工作面下部巷道動態部分充填和巷道補強支護方案,通過現場實測發現上述方案能夠滿足上覆巷道穩定性和下伏工作面高效高產的要求,研究結果和控制方案可為千米深井巷道下壓煤的安全回采提供一定的借鑒。Abstract: To ensure the stability of an overlying roadway in close proximity to a 1000-m deep coal seam, this work, through theoretical analysis and numerical simulation, studies the deformation and failure mechanism, failure types, and prevention methods of the overlying roadway while mining a lower coal seam. Based on the study of mining conditions and overburdened space structures formed through mining, the deformation and failure law of the roadway in the strike and dip directions is obtained. Moreover, the stress evolution law of roadway deformation and failure is obtained by studying the influence of different mining stages and filling rates of the lower face on the mining of the overlying roadway. Results show that there are two types of potential roadway deformation and failure: (1) roadway section reduction failure and (2) roadway strike step subsidence failure. The fundamental cause of the deformation and failure of the overlying roadway is the influence of the large buried depth, strong mining stress, and unequal distance between the coal seam and roadway. The direct causes are the sudden increase in the stress of the roadway surrounding the rock and the subsidence of the key strata. In the mining process, when the mining range of the working face is more than 400 m, the roadway section reduction failure and strike ladder subsidence failure superimpose each other, inducing further roadway failure. Therefore, a scheme of partial filling and strengthening of the roadway along the working face is designed. Field measurements revealed that the above scheme can meet the stability requirements of the overlying roadway and the high efficiency and yield of the underlying working face. The results provide some references for the safe mining of coal in the 1000-m deep coal seam.
-
Key words:
- a kilometer-deep mine /
- roadway protection /
- underlying coal seams /
- close mining /
- partial mine filling
-
圖 12 工作面推進不同階段時Z方向的應力變化圖(垂直于巷道)。(a)工作面推進50 m時應力分布情況;(b)工作面推進100 m時應力分布情況;(c)工作面推進300 m時應力分布情況;(d)工作面推進500 m時應力分布情況
Figure 12. Stress variation diagram in the Z-direction at different stages of the working face (perpendicular to the roadway): (a) stress distribution in Z direction when mining 50 m working face; (b) stress distribution in Z direction when mining 100 m working face; (c) stress distribution in Z direction when mining 300 m working face; (d) stress distribution in Z direction when mining 500 m working face
圖 13 工作面推進不同階段時Z方向的應力變化圖(垂直于工作面)。(a)工作面推進50 m時應力分布情況;(b)工作面推進100 m時應力分布情況;(c)工作面推進300 m時應力分布情況;(d)工作面推進500 m時應力分布情況
Figure 13. Stress variation diagram in the Z-direction at different stages of the working face (perpendicular to the working face): (a) stress distribution in Z direction when mining 50 m working face; (b) stress distribution in Z direction when mining 100 m working face; (c) stress distribution in Z direction when mining 300 m working face; (d) stress distribution in Z direction when mining 500 m working face
表 1 各巖層的物理力學參數
Table 1. Physical and mechanical parameters of each rock layer
Lithology Thickness/
mBody force/
(MN·m?3)Elasticity
modulus/GPaTensile
strength/MPaPacksand 11.69 0.026 4 4.2 Coal 7 0.54 0.025 1.0 0.8 Siltstone 12.1 0.024 3.4 2.5 Mudstone 2.84 0.025 1.2 2.0 Packsand 24.32 0.026 4 4.2 Coal 9 0.48 0.025 1.0 0.8 Packsand 9.4 0.026 4 4.2 Mudstone 22.6 0.025 2.5 1.9 Sandstone 11.2 0.025 6.5 3.5 Coal 19 2.2 0.025 1.0 0.8 Sandstone 0.7 0.025 6.5 3.5 表 2 不同充填率最大下沉量、傾斜和水平變形值
Table 2. Maximum subsidence, gradient, and horizontal deformation values at different filling rates
Filling ratio/% Wmax /m imax/(mm·m?1) εmax/(mm·m?1) 0 0.476 14.4 6.6 70 0.142 4.3 2 75 0.119 3.6 1.65 80 0.095 2.88 1.31 90 0.476 1.44 0.66 表 3 傾向主斷面上水平變形值
Table 3. Horizontal deformation values on the dipping main section
Distance from open cutting /
mHorizontal displacement deformation /
(mm·m?1)0?50 0 100 1.3×10?5 150 3×10?4 200 0.01 250 0.03 300 0.12 350 0.4 400 1 450 2.06 500 4.0 www.77susu.com -
參考文獻
[1] Wang G F, Hu X P, Liu X H, et al. Adaptability analysis of four-leg hydraulic support for underhand working face with large mining height of kilometer deep mine. J China Coal Soc, 2020, 45(3): 865王國法, 胡相捧, 劉新華, 等. 千米深井大采高俯采工作面四柱液壓支架適應性分析. 煤炭學報, 2020, 45(3):865 [2] Huang B X, Zhang N, Jing H W, et al. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway. J China Coal Soc, 2020, 45(3): 911黃炳香, 張農, 靖洪文, 等. 深井采動巷道圍巖流變和結構失穩大變形理論. 煤炭學報, 2020, 45(3):911 [3] Qi Q X, Pan Y S, Shu L Y, et al. Theory and technical framework of prevention and control with different sources in multi-scales for coal and rock dynamic disasters in deep mining of coal mines. J China Coal Soc, 2018, 43(7): 1801齊慶新, 潘一山, 舒龍勇, 等. 煤礦深部開采煤巖動力災害多尺度分源防控理論與技術架構. 煤炭學報, 2018, 43(7):1801 [4] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417 [5] Liu F, Cao W J, Zhang J M, et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry. J China Coal Soc, 2021, 46(1): 1劉峰, 曹文君, 張建明, 等. 我國煤炭工業科技創新進展及“十四五”發展方向. 煤炭學報, 2021, 46(1):1 [6] He X Q, Zhou C, Song D Z, et al. Mechanism and monitoring and early warning technology for rockburst in coal mines. Int J Miner Metall Mater, 2021, 28(7): 1097 doi: 10.1007/s12613-021-2267-5 [7] Kang H P, Fan M J, Gao F Q, et al. Deformation and support of rock roadway at depth more than 1 000 meters. Chin J Rock Mech Eng, 2015, 34(11): 2227康紅普, 范明建, 高富強, 等. 超千米深井巷道圍巖變形特征與支護技術. 巖石力學與工程學報, 2015, 34(11):2227 [8] Jiang P F, Kang H P, Wang Z G, et al. Principle, technology and application of soft rock roadway strata control by means of “rock bolting, U-shaped yielding steel Arches and back filling” in synergy in 1 000 m deep coal mines. J China Coal Soc, 2020, 45(3): 1020姜鵬飛, 康紅普, 王志根, 等. 千米深井軟巖大巷圍巖錨架充協同控制原理、技術及應用. 煤炭學報, 2020, 45(3):1020 [9] Wang J C, Wang Z H, Yang J, et al. Mining-induced stress rotation and its application in longwall face with large length in kilometer deep coal mine. J China Coal Soc, 2020, 45(3): 876王家臣, 王兆會, 楊杰, 等. 千米深井超長工作面采動應力旋轉特征及應用. 煤炭學報, 2020, 45(3):876 [10] Wang G A, Zhu S T, Jiang F X, et al. Mechanism of rock burst induced by overall instability of isolated coal and its prevention in large well at thousands-kilometer underground. J Min Saf Eng, 2019, 36(5): 968王高昂, 朱斯陶, 姜福興, 等. 千米深井大巷孤立煤體整體失穩沖擊機理及防治研究. 采礦與安全工程學報, 2019, 36(5):968 [11] Liu Q, Gao M Z, Wang M, et al. Study on rock pressure behavior law and overburden displacement characteristics of mining face at 1000m depth. Chin J Rock Mech Eng, 2019, 38(Suppl 1): 3070劉強, 高明忠, 王滿, 等. 千米深井采動工作面礦壓顯現規律及覆巖位移特征研究. 巖石力學與工程學報, 2019, 38(增刊1): 3070 [12] Kang H P, Wang G F, Jiang P F, et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1 000 m. J China Coal Soc, 2018, 43(7): 1789康紅普, 王國法, 姜鵬飛, 等. 煤礦千米深井圍巖控制及智能開采技術構想. 煤炭學報, 2018, 43(7):1789 [13] Zhang N, Chen H, Chen Y. An engineering case of gob-side entry retaining in one kilometer-depth soft rock roadway with high ground pressure. J China Coal Soc, 2015, 40(3): 494張農, 陳紅, 陳瑤. 千米深井高地壓軟巖巷道沿空留巷工程案例. 煤炭學報, 2015, 40(3):494 [14] Guo W B, Li C. Analysis of the influence on the upper entries due to the lower and long distance coal seam mining. J Henan Polytech Univ Nat Sci, 2018, 37(2): 22郭文兵, 李超. 遠距離下部煤層回采對上部采場巷道影響分析. 河南理工大學學報(自然科學版), 2018, 37(2):22 [15] Zhao Z M, Meng W F, Lu D H, et al. Damage of upper arch walling support roadway with lower working face mined. J China Coal Soc, 2011, 36(Suppl 1): 23趙忠明, 孟武峰, 魯大華, 等. 下工作面開采對上部砌碹巷道的破壞. 煤炭學報, 2011, 36(增刊1): 23 [16] Li X H, Yang H M, Zhang D S. Simulation analysis of surrounding rock deformation law of main entry with the below seams mined. J China Coal Soc, 2006, 31(1): 1 doi: 10.3321/j.issn:0253-9993.2006.01.001李學華, 楊宏敏, 張東升. 下伏煤層開采引起的大巷變形規律模擬研究. 煤炭學報, 2006, 31(1):1 doi: 10.3321/j.issn:0253-9993.2006.01.001 [17] Tu M, Zhang X Y, Zhang H L. Dynamic effect on overlying coal entry in using lower protective seam mining and its controlling measures. J Min Saf Eng, 2008, 25(4): 426 doi: 10.3969/j.issn.1673-3363.2008.04.010涂敏, 張向陽, 張華磊. 下保護層開采對上覆煤巷的動態影響及控制研究. 采礦與安全工程學報, 2008, 25(4):426 doi: 10.3969/j.issn.1673-3363.2008.04.010 [18] Zhang W L, Xiong Z Q, Wang H Y, et al. Study on deformation law of overlying roadway under condition of lower protective seam mining. Coal Sci Technol, 2014, 42(5): 9張王磊, 熊祖強, 王紅巖, 等. 下保護層開采條件下上覆巷道變形規律研究. 煤炭科學技術, 2014, 42(5):9 [19] Du Y, Zheng X T, Xie M W, et al. Strength weakening characteristic of rock burst structural planes. Chin J Eng, 2018, 40(3): 269杜巖, 鄭孝婷, 謝謨文, 等. 巖爆結構面強度的弱化特征. 工程科學學報, 2018, 40(3):269 [20] Zhang B S, Yang S S, Kang L X, et al. Discussion on method for determining reasonable position of roadway for ultra-close multi-seam. Chin J Rock Mech Eng, 2008, 27(1): 97 doi: 10.3321/j.issn:1000-6915.2008.01.015張百勝, 楊雙鎖, 康立勛, 等. 極近距離煤層回采巷道合理位置確定方法探討. 巖石力學與工程學報, 2008, 27(1):97 doi: 10.3321/j.issn:1000-6915.2008.01.015 [21] Wu X Y, Jiang L S, Xu X G, et al. Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress. J Cent South Univ, 2021, 28(2): 543 doi: 10.1007/s11771-021-4620-2 [22] Wang L, Wang Q, Huang Y B, et al. Study on deformation mechanism and support technology of deep cross-measure roadway under high stress. J Min Saf Eng, 2019, 36(1): 112王雷, 王琦, 黃玉兵, 等. 深部高應力穿層巷道變形機制及支護技術研究. 采礦與安全工程學報, 2019, 36(1):112 [23] Peng S P, Ling B C, Zheng G S, et al. Study on over rock moving and roadway deformation within the curve subsidence zone. J China Coal Soc, 2002, 27(1): 21 doi: 10.3321/j.issn:0253-9993.2002.01.005彭蘇萍, 凌標燦, 鄭高升, 等. 采場彎曲下沉帶內部巷道變形與巖層移動規律研究. 煤炭學報, 2002, 27(1):21 doi: 10.3321/j.issn:0253-9993.2002.01.005 [24] Qiang M G, Shi P W, Xu J L. Mine Pressure and Rock Formation Control. Xuzhou: China University of Mining and Technology Press, 2010錢鳴高, 石平五, 許家林. 礦山壓力與巖層控制. 徐州: 中國礦業大學出版社, 2010 [25] Xu J L. Green Mining of Coal Mine. Xuzhou: China University of Mining and Technology Press, 2011許家林. 煤礦綠色開采. 徐州: 中國礦業大學出版社, 2011 [26] Hu B N, Zhang H X, Shen B H. Building, Water, Railway and Main Shaft and Lane Coal Pillar Retention and Coal Mining Guide. Beijing: Emergency Management Press, 2017胡炳南, 張華興, 申寶宏. 建筑物、水體、鐵路及主要井巷煤柱留設與壓煤開采指南. 北京: 應急管理出版社, 2017 -