<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于上覆巷道保護的下伏煤層安全回采

周超 宋大釗 李振雷 何學秋 鐘濤平

周超, 宋大釗, 李振雷, 何學秋, 鐘濤平. 基于上覆巷道保護的下伏煤層安全回采[J]. 工程科學學報, 2022, 44(4): 504-515. doi: 10.13374/j.issn2095-9389.2021.05.24.002
引用本文: 周超, 宋大釗, 李振雷, 何學秋, 鐘濤平. 基于上覆巷道保護的下伏煤層安全回采[J]. 工程科學學報, 2022, 44(4): 504-515. doi: 10.13374/j.issn2095-9389.2021.05.24.002
ZHOU Chao, SONG Da-zhao, LI Zhen-lei, HE Xue-qiu, ZHONG Tao-ping. Mining safely under a coal seam while protecting an overlying roadway[J]. Chinese Journal of Engineering, 2022, 44(4): 504-515. doi: 10.13374/j.issn2095-9389.2021.05.24.002
Citation: ZHOU Chao, SONG Da-zhao, LI Zhen-lei, HE Xue-qiu, ZHONG Tao-ping. Mining safely under a coal seam while protecting an overlying roadway[J]. Chinese Journal of Engineering, 2022, 44(4): 504-515. doi: 10.13374/j.issn2095-9389.2021.05.24.002

基于上覆巷道保護的下伏煤層安全回采

doi: 10.13374/j.issn2095-9389.2021.05.24.002
基金項目: 國家自然科學基金資助項目(51904019,51634001)
詳細信息
    通訊作者:

    宋大釗, E-mail: song.dz@163.com

    何學秋, E-mail: hexq@ustb.edu.cn

  • 中圖分類號: TD322

Mining safely under a coal seam while protecting an overlying roadway

More Information
  • 摘要: 針對千米深井下伏煤層回采需保證上覆巷道穩定性的問題,通過理論分析、數值模擬和現場實測的方法,研究了下伏煤層開采過程中上覆巖層巷道變形破壞類型、破壞機理和防治辦法。通過對開采條件和開采形成的覆巖空間結構的研究,得到了走向和傾向方向上的巷道變形破壞規律;通過研究下伏工作面不同開采階段、不同充填率條件對上覆巷道的采動影響,得到了巷道變形破壞的應力演化規律。結果表明:千米深井下伏煤層開采,上覆巷道潛在的變形破壞類型主要有兩種,一是巷道斷面縮減型破壞,二是巷道走向階梯下沉型破壞。上覆巷道變形破壞的根本原因是大埋深、強采動應力,特別是下伏煤層距上覆巷道較近且距離不均等的影響,直接原因是采動造成的巷道圍巖應力突增及關鍵巖層的破斷下沉。開采過程中,工作面走向開采范圍超過400 m時,巷道斷面縮減型破壞和走向階梯下沉型破壞會相互疊加,誘發更大的巷道破壞。為控制這兩種巷道的潛在破壞類型,設計了沿工作面下部巷道動態部分充填和巷道補強支護方案,通過現場實測發現上述方案能夠滿足上覆巷道穩定性和下伏工作面高效高產的要求,研究結果和控制方案可為千米深井巷道下壓煤的安全回采提供一定的借鑒。

     

  • 圖  1  工作面相對位置示意圖。(a)平面圖;(b)剖面圖

    Figure  1.  Diagram of the relative position of the working face: (a) floor plan; (b) profile

    圖  2  煤層開采走向主斷面地表下沉、移動和變形示意[25]

    Figure  2.  Diagram of the surface subsidence, movement, and deformation on the main section of the coal seam mining strike[25]

    圖  3  整體模型

    Figure  3.  Overall model

    圖  4  不同充填率下Z方向位移變化云圖

    Figure  4.  Cloud map of the displacement change in the Z-direction at different filling rates

    圖  5  不同充填率下巷道下沉量和水平位移的變化曲線。(a)巷道下沉量;(b)巷道的水平位移

    Figure  5.  Change curve of the roadway subsidence and horizontal displacement under different filling rates: (a) amount of roadway subsidence; (b) horizontal displacement deformation of the roadway

    圖  6  充填率為79%時巷道的水平變形和傾斜變形

    Figure  6.  Horizontal strain and slant deformation of the roadway when the filling rate is 79%

    圖  7  傾斜主斷面水平移動變形圖

    Figure  7.  Horizontal movement and deformation diagram of the inclined main section

    圖  8  工作面不同推采階段的水平位移

    Figure  8.  Horizontal displacement of the working face at different stages of mining

    圖  9  工作面推采過程中的水平變形

    Figure  9.  Horizontal deformation diagram of the working face in the mining process

    圖  10  工作面不同推采階段巷道的下沉量

    Figure  10.  Subsidence of the roadway at different mining stages in the working face

    圖  11  工作面推采過程中傾斜的變化

    Figure  11.  Inclination change of the working face in the mining process

    圖  12  工作面推進不同階段時Z方向的應力變化圖(垂直于巷道)。(a)工作面推進50 m時應力分布情況;(b)工作面推進100 m時應力分布情況;(c)工作面推進300 m時應力分布情況;(d)工作面推進500 m時應力分布情況

    Figure  12.  Stress variation diagram in the Z-direction at different stages of the working face (perpendicular to the roadway): (a) stress distribution in Z direction when mining 50 m working face; (b) stress distribution in Z direction when mining 100 m working face; (c) stress distribution in Z direction when mining 300 m working face; (d) stress distribution in Z direction when mining 500 m working face

    圖  13  工作面推進不同階段時Z方向的應力變化圖(垂直于工作面)。(a)工作面推進50 m時應力分布情況;(b)工作面推進100 m時應力分布情況;(c)工作面推進300 m時應力分布情況;(d)工作面推進500 m時應力分布情況

    Figure  13.  Stress variation diagram in the Z-direction at different stages of the working face (perpendicular to the working face): (a) stress distribution in Z direction when mining 50 m working face; (b) stress distribution in Z direction when mining 100 m working face; (c) stress distribution in Z direction when mining 300 m working face; (d) stress distribution in Z direction when mining 500 m working face

    圖  14  巷道右側巖層應力變化圖

    Figure  14.  Stress variation diagram of the rock strata on the right side of the roadway

    圖  15  工作面回采過程中巷道變化趨勢圖

    Figure  15.  Variation trend diagram of the roadway in the working face mining process

    圖  16  巷道部分充填方案

    Figure  16.  Partial filling scheme of the roadway

    圖  17  西大巷加固平面圖

    Figure  17.  Support and reinforcement scheme of the roadway

    圖  18  觀測點處巷道變形(頂底)值變化趨勢

    Figure  18.  Variation trend of the roadway deformation (top and bottom) value at the observation point

    圖  19  觀測點處巷道變形(平距)值變化趨勢

    Figure  19.  Variation trend of the roadway deformation (horizontal distance) value at the observation point

    表  1  各巖層的物理力學參數

    Table  1.   Physical and mechanical parameters of each rock layer

    LithologyThickness/
    m
    Body force/
    (MN·m?3)
    Elasticity
    modulus/GPa
    Tensile
    strength/MPa
    Packsand11.690.02644.2
    Coal 70.540.0251.00.8
    Siltstone12.10.0243.42.5
    Mudstone2.840.0251.22.0
    Packsand24.320.02644.2
    Coal 90.480.0251.00.8
    Packsand9.40.02644.2
    Mudstone22.60.0252.51.9
    Sandstone11.20.0256.53.5
    Coal 192.20.0251.00.8
    Sandstone0.70.0256.53.5
    下載: 導出CSV

    表  2  不同充填率最大下沉量、傾斜和水平變形值

    Table  2.   Maximum subsidence, gradient, and horizontal deformation values at different filling rates

    Filling ratio/%Wmax /mimax/(mm·m?1)εmax/(mm·m?1)
    00.47614.46.6
    700.1424.32
    750.1193.61.65
    800.0952.881.31
    900.4761.440.66
    下載: 導出CSV

    表  3  傾向主斷面上水平變形值

    Table  3.   Horizontal deformation values on the dipping main section

    Distance from open cutting /
    m
    Horizontal displacement deformation /
    (mm·m?1)
    0?500
    1001.3×10?5
    1503×10?4
    2000.01
    2500.03
    3000.12
    3500.4
    4001
    4502.06
    5004.0
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang G F, Hu X P, Liu X H, et al. Adaptability analysis of four-leg hydraulic support for underhand working face with large mining height of kilometer deep mine. J China Coal Soc, 2020, 45(3): 865

    王國法, 胡相捧, 劉新華, 等. 千米深井大采高俯采工作面四柱液壓支架適應性分析. 煤炭學報, 2020, 45(3):865
    [2] Huang B X, Zhang N, Jing H W, et al. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway. J China Coal Soc, 2020, 45(3): 911

    黃炳香, 張農, 靖洪文, 等. 深井采動巷道圍巖流變和結構失穩大變形理論. 煤炭學報, 2020, 45(3):911
    [3] Qi Q X, Pan Y S, Shu L Y, et al. Theory and technical framework of prevention and control with different sources in multi-scales for coal and rock dynamic disasters in deep mining of coal mines. J China Coal Soc, 2018, 43(7): 1801

    齊慶新, 潘一山, 舒龍勇, 等. 煤礦深部開采煤巖動力災害多尺度分源防控理論與技術架構. 煤炭學報, 2018, 43(7):1801
    [4] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417

    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
    [5] Liu F, Cao W J, Zhang J M, et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry. J China Coal Soc, 2021, 46(1): 1

    劉峰, 曹文君, 張建明, 等. 我國煤炭工業科技創新進展及“十四五”發展方向. 煤炭學報, 2021, 46(1):1
    [6] He X Q, Zhou C, Song D Z, et al. Mechanism and monitoring and early warning technology for rockburst in coal mines. Int J Miner Metall Mater, 2021, 28(7): 1097 doi: 10.1007/s12613-021-2267-5
    [7] Kang H P, Fan M J, Gao F Q, et al. Deformation and support of rock roadway at depth more than 1 000 meters. Chin J Rock Mech Eng, 2015, 34(11): 2227

    康紅普, 范明建, 高富強, 等. 超千米深井巷道圍巖變形特征與支護技術. 巖石力學與工程學報, 2015, 34(11):2227
    [8] Jiang P F, Kang H P, Wang Z G, et al. Principle, technology and application of soft rock roadway strata control by means of “rock bolting, U-shaped yielding steel Arches and back filling” in synergy in 1 000 m deep coal mines. J China Coal Soc, 2020, 45(3): 1020

    姜鵬飛, 康紅普, 王志根, 等. 千米深井軟巖大巷圍巖錨架充協同控制原理、技術及應用. 煤炭學報, 2020, 45(3):1020
    [9] Wang J C, Wang Z H, Yang J, et al. Mining-induced stress rotation and its application in longwall face with large length in kilometer deep coal mine. J China Coal Soc, 2020, 45(3): 876

    王家臣, 王兆會, 楊杰, 等. 千米深井超長工作面采動應力旋轉特征及應用. 煤炭學報, 2020, 45(3):876
    [10] Wang G A, Zhu S T, Jiang F X, et al. Mechanism of rock burst induced by overall instability of isolated coal and its prevention in large well at thousands-kilometer underground. J Min Saf Eng, 2019, 36(5): 968

    王高昂, 朱斯陶, 姜福興, 等. 千米深井大巷孤立煤體整體失穩沖擊機理及防治研究. 采礦與安全工程學報, 2019, 36(5):968
    [11] Liu Q, Gao M Z, Wang M, et al. Study on rock pressure behavior law and overburden displacement characteristics of mining face at 1000m depth. Chin J Rock Mech Eng, 2019, 38(Suppl 1): 3070

    劉強, 高明忠, 王滿, 等. 千米深井采動工作面礦壓顯現規律及覆巖位移特征研究. 巖石力學與工程學報, 2019, 38(增刊1): 3070
    [12] Kang H P, Wang G F, Jiang P F, et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1 000 m. J China Coal Soc, 2018, 43(7): 1789

    康紅普, 王國法, 姜鵬飛, 等. 煤礦千米深井圍巖控制及智能開采技術構想. 煤炭學報, 2018, 43(7):1789
    [13] Zhang N, Chen H, Chen Y. An engineering case of gob-side entry retaining in one kilometer-depth soft rock roadway with high ground pressure. J China Coal Soc, 2015, 40(3): 494

    張農, 陳紅, 陳瑤. 千米深井高地壓軟巖巷道沿空留巷工程案例. 煤炭學報, 2015, 40(3):494
    [14] Guo W B, Li C. Analysis of the influence on the upper entries due to the lower and long distance coal seam mining. J Henan Polytech Univ Nat Sci, 2018, 37(2): 22

    郭文兵, 李超. 遠距離下部煤層回采對上部采場巷道影響分析. 河南理工大學學報(自然科學版), 2018, 37(2):22
    [15] Zhao Z M, Meng W F, Lu D H, et al. Damage of upper arch walling support roadway with lower working face mined. J China Coal Soc, 2011, 36(Suppl 1): 23

    趙忠明, 孟武峰, 魯大華, 等. 下工作面開采對上部砌碹巷道的破壞. 煤炭學報, 2011, 36(增刊1): 23
    [16] Li X H, Yang H M, Zhang D S. Simulation analysis of surrounding rock deformation law of main entry with the below seams mined. J China Coal Soc, 2006, 31(1): 1 doi: 10.3321/j.issn:0253-9993.2006.01.001

    李學華, 楊宏敏, 張東升. 下伏煤層開采引起的大巷變形規律模擬研究. 煤炭學報, 2006, 31(1):1 doi: 10.3321/j.issn:0253-9993.2006.01.001
    [17] Tu M, Zhang X Y, Zhang H L. Dynamic effect on overlying coal entry in using lower protective seam mining and its controlling measures. J Min Saf Eng, 2008, 25(4): 426 doi: 10.3969/j.issn.1673-3363.2008.04.010

    涂敏, 張向陽, 張華磊. 下保護層開采對上覆煤巷的動態影響及控制研究. 采礦與安全工程學報, 2008, 25(4):426 doi: 10.3969/j.issn.1673-3363.2008.04.010
    [18] Zhang W L, Xiong Z Q, Wang H Y, et al. Study on deformation law of overlying roadway under condition of lower protective seam mining. Coal Sci Technol, 2014, 42(5): 9

    張王磊, 熊祖強, 王紅巖, 等. 下保護層開采條件下上覆巷道變形規律研究. 煤炭科學技術, 2014, 42(5):9
    [19] Du Y, Zheng X T, Xie M W, et al. Strength weakening characteristic of rock burst structural planes. Chin J Eng, 2018, 40(3): 269

    杜巖, 鄭孝婷, 謝謨文, 等. 巖爆結構面強度的弱化特征. 工程科學學報, 2018, 40(3):269
    [20] Zhang B S, Yang S S, Kang L X, et al. Discussion on method for determining reasonable position of roadway for ultra-close multi-seam. Chin J Rock Mech Eng, 2008, 27(1): 97 doi: 10.3321/j.issn:1000-6915.2008.01.015

    張百勝, 楊雙鎖, 康立勛, 等. 極近距離煤層回采巷道合理位置確定方法探討. 巖石力學與工程學報, 2008, 27(1):97 doi: 10.3321/j.issn:1000-6915.2008.01.015
    [21] Wu X Y, Jiang L S, Xu X G, et al. Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress. J Cent South Univ, 2021, 28(2): 543 doi: 10.1007/s11771-021-4620-2
    [22] Wang L, Wang Q, Huang Y B, et al. Study on deformation mechanism and support technology of deep cross-measure roadway under high stress. J Min Saf Eng, 2019, 36(1): 112

    王雷, 王琦, 黃玉兵, 等. 深部高應力穿層巷道變形機制及支護技術研究. 采礦與安全工程學報, 2019, 36(1):112
    [23] Peng S P, Ling B C, Zheng G S, et al. Study on over rock moving and roadway deformation within the curve subsidence zone. J China Coal Soc, 2002, 27(1): 21 doi: 10.3321/j.issn:0253-9993.2002.01.005

    彭蘇萍, 凌標燦, 鄭高升, 等. 采場彎曲下沉帶內部巷道變形與巖層移動規律研究. 煤炭學報, 2002, 27(1):21 doi: 10.3321/j.issn:0253-9993.2002.01.005
    [24] Qiang M G, Shi P W, Xu J L. Mine Pressure and Rock Formation Control. Xuzhou: China University of Mining and Technology Press, 2010

    錢鳴高, 石平五, 許家林. 礦山壓力與巖層控制. 徐州: 中國礦業大學出版社, 2010
    [25] Xu J L. Green Mining of Coal Mine. Xuzhou: China University of Mining and Technology Press, 2011

    許家林. 煤礦綠色開采. 徐州: 中國礦業大學出版社, 2011
    [26] Hu B N, Zhang H X, Shen B H. Building, Water, Railway and Main Shaft and Lane Coal Pillar Retention and Coal Mining Guide. Beijing: Emergency Management Press, 2017

    胡炳南, 張華興, 申寶宏. 建筑物、水體、鐵路及主要井巷煤柱留設與壓煤開采指南. 北京: 應急管理出版社, 2017
  • 加載中
圖(19) / 表(3)
計量
  • 文章訪問數:  3553
  • HTML全文瀏覽量:  300
  • PDF下載量:  41
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-05-24
  • 網絡出版日期:  2021-08-12
  • 刊出日期:  2022-04-02

目錄

    /

    返回文章
    返回