<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

陰離子F摻雜SOFCs陰極La1?xSrxCo1?yFeyO3?δ的氧還原性能

董雨龍 李宗寶 王傲 花仕洋

董雨龍, 李宗寶, 王傲, 花仕洋. 陰離子F摻雜SOFCs陰極La1?xSrxCo1?yFeyO3?δ的氧還原性能[J]. 工程科學學報, 2022, 44(6): 1014-1019. doi: 10.13374/j.issn2095-9389.2021.05.21.005
引用本文: 董雨龍, 李宗寶, 王傲, 花仕洋. 陰離子F摻雜SOFCs陰極La1?xSrxCo1?yFeyO3?δ的氧還原性能[J]. 工程科學學報, 2022, 44(6): 1014-1019. doi: 10.13374/j.issn2095-9389.2021.05.21.005
DONG Yu-long, LI Zong-bao, WANG Ao, HUA Shi-yang. Oxygen reduction performance of F-doped La1?xSrxCo1?yFeyO3?δ solid oxide fuel cells cathode[J]. Chinese Journal of Engineering, 2022, 44(6): 1014-1019. doi: 10.13374/j.issn2095-9389.2021.05.21.005
Citation: DONG Yu-long, LI Zong-bao, WANG Ao, HUA Shi-yang. Oxygen reduction performance of F-doped La1?xSrxCo1?yFeyO3?δ solid oxide fuel cells cathode[J]. Chinese Journal of Engineering, 2022, 44(6): 1014-1019. doi: 10.13374/j.issn2095-9389.2021.05.21.005

陰離子F摻雜SOFCs陰極La1?xSrxCo1?yFeyO3?δ的氧還原性能

doi: 10.13374/j.issn2095-9389.2021.05.21.005
基金項目: 國家自然科學基金資助項目(52072134);貴州省教育廳科技拔尖資助項目(黔教合KY字[2019]060);銅仁市科技計劃資助項目(銅市科研〔2020〕123);銅仁學院博士啟動基金資助項目(trxyDH1905)
詳細信息
    通訊作者:

    E-mail: huasy576@163.com

  • 中圖分類號: TK91

Oxygen reduction performance of F-doped La1?xSrxCo1?yFeyO3?δ solid oxide fuel cells cathode

More Information
  • 摘要: 固體氧化物燃料電池(SOFC)因其高效、清潔及便攜性等優點被認為是當前最具應用前景的新能源技術之一。傳統SOFC較高的工作溫度(>800 ℃)限制了其商業推廣,降低其工作溫度成為當前研究的熱點。鈣鈦礦陰極材料La1?xSrxCo1?yFeyO3?δ(LSCF)因具有較高的電子離子混合導電性而成為中溫SOFC陰極材料的較佳選擇,同時實驗證明F替代O位能有效提升SOFC穩定性。基于已有實驗報道,本文采用第一性原理計算了F摻雜對LSCF電子結構影響、氧氣分子在(100)表面吸附能的變化、陰極體內氧空位形成能及氧離子遷移活化能的影響。通過與未摻雜材料性能的比較,證明:適量F摻雜LSCF在有效提升陰極表面對氧氣分子吸附能力同時能進一步提高體內氧離子遷移效率,從而提升陰極氧化還原反應能力。

     

  • 圖  1  F在鈣鈦礦體內(a)及(100)表面(b)摻雜后的晶胞結構.

    Figure  1.  Structures of bulk (a) and (100) surface (b) of the F-doped La0.75Sr0.25Co0.25Fe0.75O3

    圖  2  F摻雜前(a)、后(b)鈣鈦礦LSCF (100)表面層的電子局域函數;(c)摻雜前O-2p及摻雜后F-2p態分波態密度

    Figure  2.  Electron localization function of (100) surfaces (a–b) and particle density of states of O-2p in the LSCF and doped F-2p state (c)

    圖  3  氧氣分子吸附在LSCF(a)和LSCFF(b)表面Fe原子位的最優化結構

    Figure  3.  Optimized structures of the O2 absorbed on the Fe atoms in the LSCF (a) and LSCFF (b)

    圖  4  (a)氧氣吸附在LSCFF(上)及LSCF(下)表面后主要表面原子的分波態密度;(b)O2吸附LSCFF體系表面電子局域函數

    Figure  4.  (a) Partial density of states of atoms on the (100) surfaces of the LSCFF (up) and LSCF (down) after oxygen absorption; (b) electron localization function of the LSCFF after oxygen absorption.

    圖  5  LSCFF體系中F近鄰氧空位(vac1 和vac2)(a)和氧離子在空位間遷移示意圖(b);氧離子在LSCF(c)和LSCFF(d)體系中遷移的活化能

    Figure  5.  Schematic illustration of the oxygen vacancies (vac1 and vac2) near the F atom (a) in the LSCFF and the related migration path (b); calculated activation energies for oxygen ion migration in the LSCF (c) and LSCFF (d)

    表  1  F摻雜前后LSCF鈣鈦礦氧吸附性能及氧空位形成能

    Table  1.   Absorption energies of oxygen and formation energies of the oxygen cavity in the LSCF before and after F doping

    StructureEads/eVdFe-O1/nmdO1-O2/nmEvac1/eVEvac2/eV
    LSCFOn Fe?0.5570.1990.126(3)2.2622.327
    On Co?0.3020.2040.126(2)
    LSCFFOn Fe?0.5590.1950.12682.4722.468
    On Co?0.3260.2040.1262
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Jiang S P. Advances and challenges of intermediate temperature solid oxide fuel cells: A concise review. J Electrochem, 2012, 18(6): 479
    [2] Liu Y F, Zhang X L, Li C J. Advances in carbon-based anode materials for microbial fuel cells. Chin J Eng, 2020, 42(3): 270

    劉遠峰, 張秀玲, 李從舉. 微生物燃料電池碳基陽極材料的研究進展. 工程科學學報, 2020, 42(3):270
    [3] Liu S M, Deng Z F, Xu G Z, et al. Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe. Chin J Eng, 2020, 42(3): 278

    劉少名, 鄧占鋒, 徐桂芝, 等. 歐洲固體氧化物燃料電池(SOFC)產業化現狀. 工程科學學報, 2020, 42(3):278
    [4] Jiang Z Y, Xia C R, Chen F L. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochimica Acta, 2010, 55(11): 3595 doi: 10.1016/j.electacta.2010.02.019
    [5] Zhang Y, Knibbe R, Sunarso J, et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500 ℃. Adv Mater, 2017, 29(48): 1700132 doi: 10.1002/adma.201700132
    [6] Zhang Y X, Ma J B, Li M, et al. Plasma glow discharge as a tool for surface modification of catalytic solid oxides: A case study of La0.6Sr0.4Co0.2Fe0.8O3–δ perovskite. Energies, 2016, 9(10): 786 doi: 10.3390/en9100786
    [7] Liang F L, Chen J, Jiang S P, et al. High performance solid oxide fuel cells with electrocatalytically enhanced (La, Sr)MnO3 cathodes. Electrochem Commun, 2009, 11(5): 1048 doi: 10.1016/j.elecom.2009.03.009
    [8] Shao Z P, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431(7005): 170 doi: 10.1038/nature02863
    [9] Jia L C, Li K, Yan D, et al. Oxygen adsorption properties on a palladium promoted La1–xSrxMnO3 solid oxide fuel cell cathode. RSC Adv, 2015, 5(10): 7761 doi: 10.1039/C4RA08705D
    [10] Kwon H, Park J, Kim B K, et al. Effect of B-cation doping on oxygen vacancy formation and migration in LaBO3: A density functional theory study. J Korean Ceram Soc, 2015, 52(5): 331 doi: 10.4191/kcers.2015.52.5.331
    [11] Zhang M, Yang M, Hou Z F, et al. A bi-layered composite cathode of La0Sr0.2MnO3-YSZ and La0.8Sr0.2MnO3?La0.4Ce0.6O1.8 for IT-SOFCs. Electrochimica Acta, 2008, 53(15): 4998 doi: 10.1016/j.electacta.2008.01.095
    [12] Ji Y, Kilner J A, Carolan M F. Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-La0.8Sr0.2MnOδ (LSM) composites. Solid State Ion, 2005, 176(9-10): 937 doi: 10.1016/j.ssi.2004.11.019
    [13] Zhao H, Huo L H, Gao S. Electrochemical properties of LSM-CBO composite cathode. J Power Sources, 2004, 125(2): 149 doi: 10.1016/j.jpowsour.2003.07.009
    [14] Qiu P, Wang A, Li J, et al. Promoted CO2-poisoning resistance of La0.8Sr0.2MnO3−δ-coated Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for intermediate temperature solid oxide fuel cells. J Power Sources, 2016, 327: 408
    [15] Vohs J M, Gorte R J. High-performance SOFC cathodes prepared by infiltration. Adv Mater, 2009, 21(9): 943 doi: 10.1002/adma.200802428
    [16] Cui X Y, Ringer S P. On the nexus between atom probe microscopy and density functional theory simulations. Mater Charact, 2018, 146: 347 doi: 10.1016/j.matchar.2018.05.015
    [17] Yasuda I, Hishinuma M. Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites. J Solid State Chem, 1996, 123(2): 382 doi: 10.1006/jssc.1996.0193
    [18] Zhang Z B, Zhu Y L, Zhong Y J, et al. Anion doping: A new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv Energy Mater, 2017, 7(17): 1700242 doi: 10.1002/aenm.201700242
    [19] Xie Y, Shi N, Huan D M, et al. A stable and efficient cathode for fluorine-containing proton-conducting solid oxide fuel cells. ChemSusChem, 2018, 11(19): 3423 doi: 10.1002/cssc.201801193
    [20] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter, 1996, 54(16): 11169 doi: 10.1103/PhysRevB.54.11169
    [21] Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter, 1994, 49(20): 14251 doi: 10.1103/PhysRevB.49.14251
    [22] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18): 3865 doi: 10.1103/PhysRevLett.77.3865
    [23] Wang Y, Cheng H P. Oxygen reduction activity on perovskite oxide surfaces: A comparative first-principles study of LaMnO3, LaFeO3, and LaCrO3. J Phys Chem C, 2013, 117(5): 2106 doi: 10.1021/jp309203k
    [24] Ritzmann A M, Dieterich J M, Carter E A. Density functional theory + U analysis of the electronic structure and defect chemistry of LSCF (La05Sr0.5Co0.25Fe0.75O3–δ). Phys Chem Chem Phys, 2016, 18(17): 12260 doi: 10.1039/C6CP01720G
    [25] Cao Y P, Gadre M J, Ngo A T, et al. Factors controlling surface oxygen exchange in oxides. Nat Commun, 2019, 10(1): 1346 doi: 10.1038/s41467-019-08674-4
    [26] Kotomin E A, Evarestov R A, Mastrikov Y A, et al. DFT plane wave calculations of the atomic and electronic structure of LaMnO3(001) surface. Phys Chem Chem Phys, 2005, 7(11): 2346 doi: 10.1039/b503272e
    [27] Kobko N, Dannenberg J J. Effect of basis set superposition error (BSSE) upon ab initio calculations of organic transition states. J Phys Chem A, 2001, 105(10): 1944 doi: 10.1021/jp001970b
  • 加載中
圖(5) / 表(1)
計量
  • 文章訪問數:  999
  • HTML全文瀏覽量:  382
  • PDF下載量:  49
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-05-21
  • 網絡出版日期:  2021-07-18
  • 刊出日期:  2022-06-25

目錄

    /

    返回文章
    返回