Oxygen reduction performance of F-doped La1?xSrxCo1?yFeyO3?δ solid oxide fuel cells cathode
-
摘要: 固體氧化物燃料電池(SOFC)因其高效、清潔及便攜性等優點被認為是當前最具應用前景的新能源技術之一。傳統SOFC較高的工作溫度(>800 ℃)限制了其商業推廣,降低其工作溫度成為當前研究的熱點。鈣鈦礦陰極材料La1?xSrxCo1?yFeyO3?δ(LSCF)因具有較高的電子離子混合導電性而成為中溫SOFC陰極材料的較佳選擇,同時實驗證明F替代O位能有效提升SOFC穩定性。基于已有實驗報道,本文采用第一性原理計算了F摻雜對LSCF電子結構影響、氧氣分子在(100)表面吸附能的變化、陰極體內氧空位形成能及氧離子遷移活化能的影響。通過與未摻雜材料性能的比較,證明:適量F摻雜LSCF在有效提升陰極表面對氧氣分子吸附能力同時能進一步提高體內氧離子遷移效率,從而提升陰極氧化還原反應能力。Abstract: Solid oxide fuel cells (SOFCs), which are electrochemical devices that generate power with high efficiency, free of pollution, and nonregional restrictions, have attracted extensive attention. A traditional SOFC works at temperatures more than 800 °C, which introduces several severe problems or drawbacks, such as the high possibility of interfacial reaction between the cell components, easy densification of the electrode layer, possible crack formation owing to mismatch in the thermal expansion of cell components, and the requirement for a high-cost LaCrO3 ceramic as the interconnect material. Thus, reducing the operating temperature of SOFCs has become a consensus among researchers for the benefit of long-time operation. On the other hand, the operation of SOFCs at lower temperatures introduces several major issues, such as the increase in electrode resistivities and polarization losses of electrode reactions, particularly the oxygen reduction reaction in the cathode. Presently, perovskite-based oxides with mixed ion-electron conductivity (MIEC) are the most promising cathode materials for intermediate temperature SOFCs. Among the various mixed conducting oxides, cobalt-containing ones usually show excellent ionic conductivity and catalytic activity for oxygen reduction, and therefore, have received particular attention recently. La1?xSrxCo1?yFeyO3?δ(LSCF) is a candidate of SOFC cathodes working below 800 °C, considering its high oxygen reduction reaction activity together with its mixed ionic electronic conducting property. Meanwhile, many experimental results pointed out that doping an F anion into the perovskite cathode can improve its electrochemical performance and stability in addition to the conventional A- and B-site doping. To study the oxygen reduction reaction process of the F-doped perovskite cathode, the electronic structure, oxygen absorption on the (100) surface, the formation energy of oxygen vacancy, and activation energies for oxygen ion migration in the bulk F-doped LSCF were calculated based on the density functional theory. The results reveal that doping F in the LSCF can improve oxygen absorption and oxygen ion migration, further promoting the activity of the cathode.
-
圖 5 LSCFF體系中F近鄰氧空位(vac1 和vac2)(a)和氧離子在空位間遷移示意圖(b);氧離子在LSCF(c)和LSCFF(d)體系中遷移的活化能
Figure 5. Schematic illustration of the oxygen vacancies (vac1 and vac2) near the F atom (a) in the LSCFF and the related migration path (b); calculated activation energies for oxygen ion migration in the LSCF (c) and LSCFF (d)
表 1 F摻雜前后LSCF鈣鈦礦氧吸附性能及氧空位形成能
Table 1. Absorption energies of oxygen and formation energies of the oxygen cavity in the LSCF before and after F doping
Structure Eads/eV dFe-O1/nm dO1-O2/nm Evac1/eV Evac2/eV LSCF On Fe ?0.557 0.199 0.126(3) 2.262 2.327 On Co ?0.302 0.204 0.126(2) — — LSCFF On Fe ?0.559 0.195 0.1268 2.472 2.468 On Co ?0.326 0.204 0.1262 — — www.77susu.com -
參考文獻
[1] Jiang S P. Advances and challenges of intermediate temperature solid oxide fuel cells: A concise review. J Electrochem, 2012, 18(6): 479 [2] Liu Y F, Zhang X L, Li C J. Advances in carbon-based anode materials for microbial fuel cells. Chin J Eng, 2020, 42(3): 270劉遠峰, 張秀玲, 李從舉. 微生物燃料電池碳基陽極材料的研究進展. 工程科學學報, 2020, 42(3):270 [3] Liu S M, Deng Z F, Xu G Z, et al. Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe. Chin J Eng, 2020, 42(3): 278劉少名, 鄧占鋒, 徐桂芝, 等. 歐洲固體氧化物燃料電池(SOFC)產業化現狀. 工程科學學報, 2020, 42(3):278 [4] Jiang Z Y, Xia C R, Chen F L. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochimica Acta, 2010, 55(11): 3595 doi: 10.1016/j.electacta.2010.02.019 [5] Zhang Y, Knibbe R, Sunarso J, et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500 ℃. Adv Mater, 2017, 29(48): 1700132 doi: 10.1002/adma.201700132 [6] Zhang Y X, Ma J B, Li M, et al. Plasma glow discharge as a tool for surface modification of catalytic solid oxides: A case study of La0.6Sr0.4Co0.2Fe0.8O3–δ perovskite. Energies, 2016, 9(10): 786 doi: 10.3390/en9100786 [7] Liang F L, Chen J, Jiang S P, et al. High performance solid oxide fuel cells with electrocatalytically enhanced (La, Sr)MnO3 cathodes. Electrochem Commun, 2009, 11(5): 1048 doi: 10.1016/j.elecom.2009.03.009 [8] Shao Z P, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431(7005): 170 doi: 10.1038/nature02863 [9] Jia L C, Li K, Yan D, et al. Oxygen adsorption properties on a palladium promoted La1–xSrxMnO3 solid oxide fuel cell cathode. RSC Adv, 2015, 5(10): 7761 doi: 10.1039/C4RA08705D [10] Kwon H, Park J, Kim B K, et al. Effect of B-cation doping on oxygen vacancy formation and migration in LaBO3: A density functional theory study. J Korean Ceram Soc, 2015, 52(5): 331 doi: 10.4191/kcers.2015.52.5.331 [11] Zhang M, Yang M, Hou Z F, et al. A bi-layered composite cathode of La0Sr0.2MnO3-YSZ and La0.8Sr0.2MnO3?La0.4Ce0.6O1.8 for IT-SOFCs. Electrochimica Acta, 2008, 53(15): 4998 doi: 10.1016/j.electacta.2008.01.095 [12] Ji Y, Kilner J A, Carolan M F. Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-La0.8Sr0.2MnO3±δ (LSM) composites. Solid State Ion, 2005, 176(9-10): 937 doi: 10.1016/j.ssi.2004.11.019 [13] Zhao H, Huo L H, Gao S. Electrochemical properties of LSM-CBO composite cathode. J Power Sources, 2004, 125(2): 149 doi: 10.1016/j.jpowsour.2003.07.009 [14] Qiu P, Wang A, Li J, et al. Promoted CO2-poisoning resistance of La0.8Sr0.2MnO3−δ-coated Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for intermediate temperature solid oxide fuel cells. J Power Sources, 2016, 327: 408 [15] Vohs J M, Gorte R J. High-performance SOFC cathodes prepared by infiltration. Adv Mater, 2009, 21(9): 943 doi: 10.1002/adma.200802428 [16] Cui X Y, Ringer S P. On the nexus between atom probe microscopy and density functional theory simulations. Mater Charact, 2018, 146: 347 doi: 10.1016/j.matchar.2018.05.015 [17] Yasuda I, Hishinuma M. Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites. J Solid State Chem, 1996, 123(2): 382 doi: 10.1006/jssc.1996.0193 [18] Zhang Z B, Zhu Y L, Zhong Y J, et al. Anion doping: A new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv Energy Mater, 2017, 7(17): 1700242 doi: 10.1002/aenm.201700242 [19] Xie Y, Shi N, Huan D M, et al. A stable and efficient cathode for fluorine-containing proton-conducting solid oxide fuel cells. ChemSusChem, 2018, 11(19): 3423 doi: 10.1002/cssc.201801193 [20] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter, 1996, 54(16): 11169 doi: 10.1103/PhysRevB.54.11169 [21] Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter, 1994, 49(20): 14251 doi: 10.1103/PhysRevB.49.14251 [22] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18): 3865 doi: 10.1103/PhysRevLett.77.3865 [23] Wang Y, Cheng H P. Oxygen reduction activity on perovskite oxide surfaces: A comparative first-principles study of LaMnO3, LaFeO3, and LaCrO3. J Phys Chem C, 2013, 117(5): 2106 doi: 10.1021/jp309203k [24] Ritzmann A M, Dieterich J M, Carter E A. Density functional theory + U analysis of the electronic structure and defect chemistry of LSCF (La05Sr0.5Co0.25Fe0.75O3–δ). Phys Chem Chem Phys, 2016, 18(17): 12260 doi: 10.1039/C6CP01720G [25] Cao Y P, Gadre M J, Ngo A T, et al. Factors controlling surface oxygen exchange in oxides. Nat Commun, 2019, 10(1): 1346 doi: 10.1038/s41467-019-08674-4 [26] Kotomin E A, Evarestov R A, Mastrikov Y A, et al. DFT plane wave calculations of the atomic and electronic structure of LaMnO3(001) surface. Phys Chem Chem Phys, 2005, 7(11): 2346 doi: 10.1039/b503272e [27] Kobko N, Dannenberg J J. Effect of basis set superposition error (BSSE) upon ab initio calculations of organic transition states. J Phys Chem A, 2001, 105(10): 1944 doi: 10.1021/jp001970b -