<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

短壁連采連充式膠結充填采煤技術應用研究

林海 楊仁樹 李永亮 路彬 徐斌 范子儀 李劍楠

林海, 楊仁樹, 李永亮, 路彬, 徐斌, 范子儀, 李劍楠. 短壁連采連充式膠結充填采煤技術應用研究[J]. 工程科學學報, 2022, 44(6): 981-992. doi: 10.13374/j.issn2095-9389.2021.05.13.003
引用本文: 林海, 楊仁樹, 李永亮, 路彬, 徐斌, 范子儀, 李劍楠. 短壁連采連充式膠結充填采煤技術應用研究[J]. 工程科學學報, 2022, 44(6): 981-992. doi: 10.13374/j.issn2095-9389.2021.05.13.003
LIN Hai, YANG Ren-shu, LI Yong-liang, LU Bin, XU Bin, FAN Zi-yi, LI Jian-nan. Application of short-wall continuous mining and continuous backfilling cemented-fill mining technology[J]. Chinese Journal of Engineering, 2022, 44(6): 981-992. doi: 10.13374/j.issn2095-9389.2021.05.13.003
Citation: LIN Hai, YANG Ren-shu, LI Yong-liang, LU Bin, XU Bin, FAN Zi-yi, LI Jian-nan. Application of short-wall continuous mining and continuous backfilling cemented-fill mining technology[J]. Chinese Journal of Engineering, 2022, 44(6): 981-992. doi: 10.13374/j.issn2095-9389.2021.05.13.003

短壁連采連充式膠結充填采煤技術應用研究

doi: 10.13374/j.issn2095-9389.2021.05.13.003
基金項目: 國家自然科學基金資助項目(51804310,52174095)
詳細信息
    通訊作者:

    E-mail: b20200019@xs.ustb.edu.cn

  • 中圖分類號: TD822

Application of short-wall continuous mining and continuous backfilling cemented-fill mining technology

More Information
  • 摘要: 針對西部脆弱環境地區高強度開采產生的矸石減排及地表沉陷控制現實需要與意義,提出了采用短壁巷式膠結充填采煤技術。在研究短壁巷式膠結充填采煤技術開采原理基礎上,介紹了該技術工作面布置方式、采充工藝流程;在充填材料方面,分析了多種充填原材料礦物成分和微觀特性,并測試了不同配比條件下膠結充填材料的強度和流動特性;提出了該技術充填系統組成及整體設計思路,包括料漿制備系統、管道輸送系統、監測系統和工作面充填系統四大部分。工業實踐表明:短壁連采連充式膠結充填采煤技術在5 m厚近水平煤層中充實率可達98%以上,頂板最大下沉量為102 mm,地表最大下沉量為8.9 mm,共消耗了24.5萬噸矸石,應用效果良好。

     

  • 圖  1  技術原理

    Figure  1.  Technical principle

    圖  2  采充順序

    Figure  2.  Mining and backfilling sequence

    圖  3  煤矸石。(a)礦物成分;(b)微觀結構

    Figure  3.  Gangue: (a) mineral composition; (b) microstructure

    圖  4  粉煤灰。(a)礦物成分;(b)微觀結構;(c)粒徑分布

    Figure  4.  Fly ash: (a) mineral composition; (b) microstructure; (c) particle size distribution

    圖  5  水泥.(a)礦物成分;(b)微觀結構;(c)粒徑分布

    Figure  5.  Cement: (a) mineral composition; (b) microstructure; (c) particle size distribution

    圖  6  充填體齡期強度. (a)不同質量分數的水泥;(b)不同質量分數的粉煤灰;(c)不同質量分數的料漿

    Figure  6.  Age strength of the filling body: (a) different mass fractions of cement; (b) different mass fractions of fly ash; (c) different mass fractions of slurry

    圖  7  料漿塌落度和泌水率. (a)不同質量分數的水泥;(b)不同質量分數的粉煤灰;(c)不同質量分數的料漿

    Figure  7.  Slump and bleeding rate: (a) different mass fractions of cement; (b) different mass fractions of fly ash; (c) different mass fractions of slurry

    圖  8  矸石破碎與料漿制備系統

    Figure  8.  Gangue crushing and slurry preparation system

    圖  9  監測系統

    Figure  9.  Monitoring system

    圖  10  工作面充填方式

    Figure  10.  Filling method of the working face

    圖  11  察哈素煤礦

    Figure  11.  Chahasu Mine

    圖  12  充填效果實拍

    Figure  12.  Photos of the backfilling operation

    圖  13  井下監測.(a)煤柱與充填體受力;(b)頂板下沉量

    Figure  13.  Underground monitoring: (a) coal pillar and filling body pressure; (b) roof subsidence

    圖  14  地表位移監測

    Figure  14.  Surface subsidence monitoring

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Research Group of China Mining. Research report on economic situation of China's coal industry from 2020 to 2021. China Coal, 2021, 47(3): 53 doi: 10.3969/j.issn.1006-530X.2021.03.008

    中礦(北京)煤炭產業景氣指數研究課題組. 2020–2021年中國煤炭產業經濟形勢研究報告. 中國煤炭, 2021, 47(3):53 doi: 10.3969/j.issn.1006-530X.2021.03.008
    [2] Zhou N, Yao Y N, Song W J, et al. Present situation and prospect of coal gangue treatment technology. J Min Saf Eng, 2020, 37(1): 136

    周楠, 姚依南, 宋衛劍, 等. 煤礦矸石處理技術現狀與展望. 采礦與安全工程學報, 2020, 37(1):136
    [3] Liu J G, Li X W, He T. Application status and prospect of backfill mining in Chinese coal mines. J China Coal Soc, 2020, 45(1): 141

    劉建功, 李新旺, 何團. 我國煤礦充填開采應用現狀與發展. 煤炭學報, 2020, 45(1):141
    [4] Hu B N, Liu P L, Cui F, et al. Review and development status of backfill coal mining technology in China. Coal Sci Technol, 2020, 48(9): 39

    胡炳南, 劉鵬亮, 崔鋒, 等. 我國充填采煤技術回顧及發展現狀. 煤炭科學技術, 2020, 48(9):39
    [5] Research Group of National Key Basic Research Program of China(2013CB227900) (Basic Study on Geological Hazard Prevention and Environmental Protection in High Intensity Mining of Western Coal Area). Theory and method research of geological diaster prevention on high-intensity coal exloitation in the west areas. J China Coal Soc, 2017, 42(2): 267

    973計劃(2013CB227900)“西部煤炭高強度開采下地質災害防治與環境保護基礎研究”項目組. 西部煤炭高強度開采下地質災害防治理論與方法研究進展. 煤炭學報, 2017, 42(2):267
    [6] Fan L M, Ma X D, Li Y H, et al. Geological disasters and control technology in high intensity mining area of western China. J China Coal Soc, 2017, 42(2): 276

    范立民, 馬雄德, 李永紅, 等. 西部高強度采煤區礦山地質災害現狀與防控技術. 煤炭學報, 2017, 42(2):276
    [7] Guo W B, Bai E H, Zhao G B. Current status and progress on overburden and surface damage and prevention technology of high-intensity mining. J China Coal Soc, 2020, 45(2): 509

    郭文兵, 白二虎, 趙高博. 高強度開采覆巖地表破壞及防控技術現狀與進展. 煤炭學報, 2020, 45(2):509
    [8] Xu J M, Zhang J X, Huang Y L, et al. Experimental research on the compress deformation characteristic of waste-flyash and its application in backfilling fully mechanized coal mining technology. J Min Saf Eng, 2011, 28(1): 158 doi: 10.3969/j.issn.1673-3363.2011.01.030

    徐俊明, 張吉雄, 黃艷利, 等. 充填綜采矸石-粉煤灰壓實變形特性試驗研究及應用. 采礦與安全工程學報, 2011, 28(1):158 doi: 10.3969/j.issn.1673-3363.2011.01.030
    [9] Li M, Zhang J X, Miao X X, et al. Strata movement under compaction of solid backfill body. J China Univ Min Technol, 2014, 43(6): 969

    李猛, 張吉雄, 繆協興, 等. 固體充填體壓實特征下巖層移動規律研究. 中國礦業大學學報, 2014, 43(6):969
    [10] Zhang J X, Li J, An T L, et al. Deformation characteristic of key stratum overburden by raw waste backfilling with fully-mechanized coal minning technology. J China Coal Soc, 2010, 35(3): 357

    張吉雄, 李劍, 安泰龍, 等. 矸石充填綜采覆巖關鍵層變形特征研究. 煤炭學報, 2010, 35(3):357
    [11] Qi T Y, Feng G R, Guo Y X, et al. Experimental study on the changes of coal paste backfilling material performance during hydration process. J Min Saf Eng, 2015, 32(1): 42

    戚庭野, 馮國瑞, 郭育霞, 等. 煤礦膏體充填材料性能隨齡期變化的試驗研究. 采礦與安全工程學報, 2015, 32(1):42
    [12] Feng G R, Jia X Q, Guo Y X, et al. Study on mixture ratio of gangue-waste concrete cemented paste backfill. J Min Saf Eng, 2016, 33(6): 1072

    馮國瑞, 賈學強, 郭育霞, 等. 矸石-廢棄混凝土膠結充填材料配比的試驗研究. 采礦與安全工程學報, 2016, 33(6):1072
    [13] Wu J Y, Feng M M, Yu B Y, et al. Experimental study of strength and deformation characteristics of cemented waste rock backfills with continuous gradation. Rock Soil Mech, 2017, 38(1): 101

    吳疆宇, 馮梅梅, 郁邦永, 等. 連續級配廢石膠結充填體強度及變形特性試驗研究. 巖土力學, 2017, 38(1):101
    [14] Zhou Q, Xu H B, Liu J H. Unstable failure characteristics and performance improvement of water-high filling materials. J China Coal Soc, 2017, 42(5): 1123

    周茜, 徐懷兵, 劉娟紅. 高水充填材料失穩破壞特征研究及性能改善. 煤炭學報, 2017, 42(5):1123
    [15] Feng G M, Ding Y, Zhu H J, et al. Experimental research on a superhigh-water packing material for mining and its micromorphology. J China Univ Min Technol, 2010, 39(6): 813

    馮光明, 丁玉, 朱紅菊, 等. 礦用超高水充填材料及其結構的實驗研究. 中國礦業大學學報, 2010, 39(6):813
    [16] Ding Y, Feng G M, Wang C Z. Experimental research on basic properties of superhigh-water packing material. J China Coal Soc, 2011, 36(7): 1087

    丁玉, 馮光明, 王成真. 超高水充填材料基本性能試驗研究. 煤炭學報, 2011, 36(7):1087
    [17] Wang X F, Sun C D, Zhang D S, et al. Experimental study on engineering characteristics of super-high water filling body. J Min Saf Eng, 2014, 31(6): 852

    王旭鋒, 孫春東, 張東升, 等. 超高水材料充填膠結體工程特性試驗研究. 采礦與安全工程學報, 2014, 31(6):852
    [18] Miao X X, Zhang J X. Key technologies of integration of coal mining-gangue washing-backfilling and coal mining. J China Coal Soc, 2014, 39(8): 1424

    繆協興, 張吉雄. 井下煤矸分離與綜合機械化固體充填采煤技術. 煤炭學報, 2014, 39(8):1424
    [19] Deng X J, Zhang J X, Zhou N, et al. The research and application of longwall-roadway cemented backfilling mining technology in extra-thick coal seam. J Min Saf Eng, 2014, 31(6): 857

    鄧雪杰, 張吉雄, 周楠, 等. 特厚煤層長壁巷式膠結充填開采技術研究與應用. 采礦與安全工程學報, 2014, 31(6):857
    [20] Zhang J X, Zhang Q, Ju F, et al. Theory and technique of greening mining integrating mining, separating and backfilling in deep coal resources. J China Coal Soc, 2018, 43(2): 377

    張吉雄, 張強, 巨峰, 等. 深部煤炭資源采選充綠色化開采理論與技術. 煤炭學報, 2018, 43(2):377
    [21] Zhang J X, Li M, Deng X J, et al. Method and application of extending mining upper limit under aquifer by gangue backfill mining. J Min Saf Eng, 2014, 31(2): 220

    張吉雄, 李猛, 鄧雪杰, 等. 含水層下矸石充填提高開采上限方法與應用. 采礦與安全工程學報, 2014, 31(2):220
    [22] Jia L G, Zhang H X. Stability of backfill in long wall filling mining. J Min Saf Eng, 2019, 36(6): 1234

    賈林剛, 張華興. 長壁充填開采充填體穩定性研究. 采礦與安全工程學報, 2019, 36(6):1234
    [23] Feng G M, Wang C Z, Li F K, et al. Research on bag-type filling mining with super-high-water material. J Min Saf Eng, 2011, 28(4): 602 doi: 10.3969/j.issn.1673-3363.2011.04.019

    馮光明, 王成真, 李鳳凱, 等. 超高水材料袋式充填開采研究. 采礦與安全工程學報, 2011, 28(4):602 doi: 10.3969/j.issn.1673-3363.2011.04.019
    [24] Zhou H Q, Hou C J, Sun X K, et al. Solid waste paste filling for none-village-relocation coal mining. J China Univ Min Technol, 2004, 33(2): 154 doi: 10.3321/j.issn:1000-1964.2004.02.007

    周華強, 侯朝炯, 孫希奎, 等. 固體廢物膏體充填不遷村采煤. 中國礦業大學學報, 2004, 33(2):154 doi: 10.3321/j.issn:1000-1964.2004.02.007
    [25] Xu J L, Zhu W B, Wang X Z. New method to predict the height of fractured water-conducting zone by location of key strata. J China Coal Soc, 2012, 37(5): 762

    許家林, 朱衛兵, 王曉振. 基于關鍵層位置的導水裂隙帶高度預計方法. 煤炭學報, 2012, 37(5):762
    [26] Hu B N, Zhang W H, Gao Q C, et al. Test research on permanent pillar mining with coal refuse backfilling. Coal Sci Technol, 2006, 34(11): 46 doi: 10.3969/j.issn.0253-2336.2006.11.016

    胡炳南, 張文海, 高慶潮, 等. 矸石充填巷式開采永久煤柱試驗研究. 煤炭科學技術, 2006, 34(11):46 doi: 10.3969/j.issn.0253-2336.2006.11.016
    [27] Yu Y H, Ma L Q. Application of roadway backfill mining in water-conservation coal mining: A case study in northern Shaanxi, China. Sustainability, 2019, 11(13): 3719 doi: 10.3390/su11133719
    [28] Lu B, Zhang X G, Li F, et al. Study and application of short-wall gangue cemented backfilling technology. J China Coal Soc, 2017, 42(Suppl 1): 7

    路彬, 張新國, 李飛, 等. 短壁矸石膠結充填開采技術與應用. 煤炭學報, 2017, 42(增刊1): 7
    [29] Zhang Y, Cao S G, Lai X P, et al. Study on the development mechanism and control of water-conducting fractures in short-wall block backfill mining. J Min Saf Eng, 2019, 36(6): 1086

    張云, 曹勝根, 來興平, 等. 短壁塊段式充填采煤覆巖導水裂隙發育機理及控制研究. 采礦與安全工程學報, 2019, 36(6):1086
    [30] Ma L Q, Xu Y J, Zhang D S, et al. Characteristics of aquiclude and surface deformation in continuous mining and filling with wall system for water conservation. J Min Saf Eng, 2019, 36(1): 30

    馬立強, 許玉軍, 張東升, 等. 壁式連采連充保水采煤條件下隔水層與地表變形特征. 采礦與安全工程學報, 2019, 36(1):30
    [31] Sun Q, Zhang J X, Yin W, et al. Study of stability of surrounding rock and characteristic of overburden strata movement with longwall roadway backfill coal mining. J China Coal Soc, 2017, 42(2): 404

    孫強, 張吉雄, 殷偉, 等. 長壁機械化掘巷充填采煤圍巖結構穩定性及運移規律. 煤炭學報, 2017, 42(2):404
    [32] Me Y, Zhang X G, Cao Z, et al. Coal Mine Paste Filling Theory and Key Technology of Slurry Transportation. Xuzhou: China University of Mining and Technology Press, 2010

    孟毅, 張新國, 曹忠等. 煤礦膏體充填理論與料漿輸送關鍵技術. 徐州: 中國礦業大學出版社, 2010
    [33] Yang B G. Coal Mine High-Concentration Cemented Filling Mining Technology. Beijing: China Coal Industry Publishing House, 2015

    楊寶貴. 煤礦高濃度膠結充填開采技術. 北京: 煤炭工業出版社, 2015
    [34] Liu P L, Zhang H X, Cui F, et al. Technology and practice of mechanized backfill mining for water protection with aeolian sand paste-like. J China Coal Soc, 2017, 42(1): 118

    劉鵬亮, 張華興, 崔鋒, 等. 風積砂似膏體機械化充填保水采煤技術與實踐. 煤炭學報, 2017, 42(1):118
    [35] Zhang Z G, Shi X Z, Lin X F. Parameter optimization and transportation characteristics of backfilling pipe network based on CFD. Chin J Nonferrous Met, 2019, 29(10): 2411

    張宗國, 史秀志, 吝學飛. 基于CFD的充填管網參數優化及輸送特性. 中國有色金屬學報, 2019, 29(10):2411
    [36] Sun W M, Liu P L, Sun K H, et al. Research on flat seam filling technology for high filling ratio in Yuyang coal mine. Coal Technol, 2014, 33(12): 23

    孫萬明, 劉鵬亮, 孫凱華, 等. 榆陽煤礦近水平煤層高充填率充填工藝技術研究. 煤炭技術, 2014, 33(12):23
  • 加載中
圖(14)
計量
  • 文章訪問數:  3770
  • HTML全文瀏覽量:  468
  • PDF下載量:  99
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-05-13
  • 網絡出版日期:  2021-07-20
  • 刊出日期:  2022-06-25

目錄

    /

    返回文章
    返回