Controlling techniques and characteristics of organophosphate esters in building environment: A review
-
摘要: 有機磷酸酯(Organophosphate esters, OPEs)作為一類阻燃劑和增塑劑,在建筑材料和室內裝修材料中廣泛使用。由于該類物質主要以物理添加而非化學鍵合的方式加入到材料中,因此易在使用過程中進入環境。研究表明OPEs普遍存在于室內環境中,并且濃度較高,人體長期暴露在高濃度OPEs的室內環境中,可能存在一定的健康風險。本文在綜述了常見OPEs的性質、應用和生物毒性的基礎上,總結了其在建筑環境中的污染特征、環境行為和暴露水平,介紹了建筑環境中OPEs的源匯特性、控制技術與人體暴露風險,并對未來研究方向進行了展望。Abstract: Organophosphate esters (OPEs) are widely used as flame retardants, plasticizers, stabilizers, and antifoaming agents in various building materials, such as plastics, foam, coatings, textiles and furniture, and interior decoration materials. In general, most OPEs are combined physically rather than chemically during production. This makes these chemical compounds to be easily released in an indoor environment. Also, previous studies have shown that OPEs were commonly found in an indoor environment at elevated concentrations. Long-term exposure to high concentrations of OPEs in an indoor environment might result in certain health risks. However, there is limited information on the distribution characteristics and risk assessment of OPEs in the building environment. In this study, we discussed the properties, applications, and biological toxicity of common OPEs. In addition, we reviewed the environmental behavior, pollution characteristics, and exposure level of OPEs in the building environment. Building materials and household products are important sources of OPEs in an indoor environment. The levels of OPEs in these productions were significantly associated with the concentration of OPEs in indoor air and dust. In general, indoor air and dust are regarded as the two major sinks of OPEs in the building environment. However, more volatile OPEs, such as TCIPP, TCEP, and TnBP were found predominantly in indoor air, while less volatile OPEs, such as TDCIPP and TPhP were often detected in dust due to their low vapor pressure and high affinity for particles. In general, humans can be exposed to OPEs in a building environment through three main routes of exposure: inhalation, dermal absorption, and ingestion. This study revealed that dust ingestion is the dominant route of human exposure to OPEs, while dermal absorption and inhalation were minor contributors to the total daily exposures. In addition, the relative mass transfer model and release characteristics of OPEs in the building environment were also introduced in this study. Based on the characteristics of OPEs in the building environment, the controlling techniques, which include microporous control technology, barrier control technology, compound purification technology, and an alternative strategy of OPEs, were introduced. However, prospects for future research were considered.
-
表 1 常見有機磷酸酯(OPEs)的性質和應用
Table 1. Properties and applications of common organophosphate esters
Group Compound Abbr. Formula BP/℃ logKow lologKoa Vp/Torr Application Cl-OPEs Tris(2-chloroethyl)
phosphateTCEP C6H12O4P 351 1.63 7.42 3.91×10?4 Flame retardant, plasticizer, glue, lacquer, paint, industrial processes Tris(2-chloropropyl)
phosphateTCIPP C9H18Cl3O4P 342 2.89 8.20 5.64×10?5 Flame retardant, plasticizer Tris(1,3-dichloro-
2-propyl)phosphateTDCIPP C9H15Cl6O4P 457 3.65 10.6 2.86×10?7 Flame retardant, plasticizer, paint, glue Alkyl-OPEs Triethyl phosphate TEP C6H15O4P 216 0.87 6.63 0.165 Plasticizer, polyvinylchloride, polyester resins, polyurethane foam Tripropyl phosphate TPrP C9H21O4P 254 2.67 6.5 2.9×10?2 Plasticizer Tri-n-butyl phosphate TnBP C12H27O4P 289 4.00 9.21 1.1×10?3 Plasticizer, hydraulic fluids, lacquer, paint, glue, anti-foam agent Tri-iso-butyl phosphate TiBP C12H27O4P 264 3.60 7.48 1.28×10?2 Plasticizer, lubricant, concrete Tris(2-butoxyethyl) phosphate TBEP C18H39O7P 228 3.00 13.0 1.23×10?6 Flame retardant, plasticizer, floor Flame retardant, plasticizer, floor finish, wax, lacquer, paint, glue Tris(2-ethylhexyl)
phosphateTEHP C24H51O4P 220 9.49 14.9 6.07×10?7 Flame retardant, plasticizer, fungus resistance Aryl-OPEs Tricresyl phosphate TCrP C21H21O4P 265 5.11 12.0 3.49×10?8 Plasticizer, PVC, hydraulic fluid, cellulose, cutting oil, transmission fluid Triphenyl phosphate TPhP C18H15O4P 370 4.70 8.45 4.72×10?7 Flame retardant, plasticizer, hydraulic fluids, lacquer, paint, glue 2-Ethylhexyl diphenyl
phosphateEHDPP C20H27O4P 421 6.30 8.92 3.34×10?5 Plasticizer, hydraulic fluids Triphenylphosphine oxide TPPO C12H24N3OP 389 2.87 — 1.24×10?6 Flame retardant, catalyst, extractant Note: BP—boiling point;logKow—octanol-water partition coefficient;logKoa—octanol-air partition coefficient;Vp—vapor pressure. 表 2 不同國家各種微環境室內灰塵中的OPEs
Table 2. OPEs in indoor dust of various microenvironments of different countries
Region Sample site TCEP/
(ng?g?1)TCIPP/
(ng?g?1)TDCIPP/
(ng?g?1)TEHP/
(ng?g?1)TnBP/
(ng?g?1)TBEP/
(ng?g?1)TPhP/
(ng?g?1)EHDPP/
(ng?g?1)ΣOPEs/
(ng?g?1)References China Dali E-waste disposal plant (n=13) 76–1740 640–8790 68–566 19–2100 <MDL–1730 <MDL–1060 31–6660 28–4550 934–21500 [31] Guiyu town E-waste disposal plant(n=14) 149–6920 854–10000 13–2550 24–789 228–14,100 <MDL–1860 371–332000 222–6900 4660–350000 Beijing House(n=21) 2231–30847 220–13804 <80–350 <7–1018 <7–1531 493–41917 122–1829 767–23000 [32] Daycare center(n=16) 391–17805 71–30157 <80–13,113 <7–660 <7–3741 85–4561 41–3514 Beijing Office (n=23) 11–1180 36200–191000 533–2410 <7–83 268–3980 1830–13000 350–1890 463–1840 124000(Mean) [33] Egypt Asyut House(n=20) <8–132 <15–123 <2–26 <10–557 <3–305 8–289 <2–102 38–962 [36] Offices(n=20) <8–125 <15–700 <2–46 <10–490 <3–1244 11–337 <2–74 38–1514 Public places (n=20) <8–538 <15–465 <2–261 <10–1616 <3–1029 116–2357 <2–74 937–5235 Saudi Arabia Jeddah House(n=20) 125–1650 200–3700 <MDL–270 <MDL–165 150–8700 <MDL–2750 65–1200 55–520 1000–13800 [37] Pakistan Faisalabad Urban house(n=15) <MDL–175 <MDL–85 <MDL–50 <MDL–22 <MDL–255 <MDL–145 <MDL–330 <MDL–360 49.4–473 [38] Gujarat Rural house(n=31) <MDL–340 15–185 [35] Islamabad
FaisalabadElectronics stores(n=30) 6–620 <MDL–1025 <MDL–1475 <MDL–100 10–5000 2–830 6555(Mean) [24] Clothing stores(n=15) <MDL–95 <MDL–175 <MDL–30 <MDL–70 <MDL–220 <MDL–120 967(Mean) Offices(n=16) <MDL–320 <MDL–4100 <MDL–185 <MDL–11,900 10–23450 5–285 575(Mean) Philippines Malate Rural house(n=17) <MDL–1200 4–970 <MDL–79 8.5–2100 8–770 1800(Mean) [36] Kuwait Urban house(n=15) 275–1800 120–7065 <5–340 21–800 60–1555 31–140,450 44–6890 75–10990 633–44400 [38] Germany Ludwigsburg Offices(n=10) <80–170 180–940 <30–410 <80–290 2900–13000 470–4800 21–210 4300–32000 [37] House(n=16) 140–280 370–960 <30–250 <80–110 <60–2800 180–1300 30–66 800–6000 Sweden Stockholm House(n=10) <MDL–33 0.7–11 <MDL–0.2 <MDL–1.7 2.2–27 0.6–30 69800(Mean) [34] Daycare center(n=10) 2.5–150 0.8–12 <MDL–0.7 0.1–6.2 3.9–150 31–4100 78000(Mean) US New York House(n=18) <MDL–2130 458–750 77–1440 12–394 536–5520 <MDL–3500 <MDL–4560 1930–101000 [38] Japan House(n=14) <MDL–28000 47.1–34,300 103–166000 <MDL–424 13.0–507 3240–91000 50.8–833 15.8–192 7720–238000 [39] Korea House(n=30) 192–15400 19.7–8290 <MDL–20500 17.9–2930 <MDL–1690 982–234000 66.8–25200 15.4–1490 3090–249000 [39] Note: MDL presents the method detection limit. 表 3 不同國家各種微環境室內空氣中的OPEs
Table 3. OPEs in indoor air of various microenvironments of different countries
Region Sample site TCEP/
(ng?m?3)TCIPP/
(ng?m?3)TDCIPP/
(ng?m?3)TEHP/
(ng?m?3)TnBP/
(ng?m?3)TBEP/
(ng?m?3)TEP/
(ng?m?3)TiBP/
(ng?m?3)TPhP/
(ng?m?3)ΣOPEs/
(ng?m?3)References Sweden House(n=66) <MDL–230 <MDL–1200 2.5–370 <MDL–86 0.18–300 2–54 <MDL–25 [34] Germany House(n=56) <MDL–9.2 1.2–496.9 <MDL–29.9 <MDL–9.6 <MDL–112.1 <MDL–17.5 <MDL–27.1 <MDL–663 <MDL–8.9 3.3–751 [46] New York, US House(n=54) <MDL–18.7 <MDL–293 <MDL–45.2 <MDL–0.9 <MDL–29.3 <MDL–137 0.2-332 <MDL–43.7 2.9-635 [4] Oslo, Norway Offices(n=58) <MDL–76 1.2-128 <MDL–31 <MDL–42 <MDL–119 <MDL–9 28-1018 [42] Hangzhou, China Offices(n=10) 1.03?13.38 0.8?81 0.04?14.3 0.3?2.6 0.01?90.3 0.02?5.5 0.3?10.2 5?147.8 [47] Stockholm, Sweden House(n=10) <MDL – 28 2.4–64 <MDL–17 — 3.5–45 <MDL–4.5 3.2–16 3.0–66 12–240 [34] Offices(n=10) <MDL–140 16–240 <MDL–73 — <MDL–100 <MDL–73 0.7–91 4.4–13 <MDL–2.7 21–630 Daycare center(n=10) 7.8–230 1.3–72 <MDL–30 — 3.7–320 <MDL–380 0.8–20 <MDL–63 <MDL–0.9 14–1110 Library(n=1) 590 40 <0.7 <0.8 <0.8 7.8 <0.4 640 [45] Bowling alley (n=1) 460 93 <0.4 <0.4 3.3 <0.4 <0.2 6.6 570 Radio Shop(n=4) 29 0.4–10 <0.4 <0.4 <0.5 <0.4 0.4–3.6 0.4–13 42–68 Zurich,
SwitzerlandOffices(n=4) 6.1–56 <MDL–260 — <MDL–0.6 <MDL–8.1 <MDL–1.2 0.9–3.1 [48] Building material markets(n=4) 6.3–11.9 46–57 — 1.2–0.6 14–17 <MDL–2.5 0.6–1.1 表 4 不同種類建筑材料與家居產品中OPEs的含量
Table 4. Concentrations of OPEs in different types of building materials and household products
Region Sample types TnBP/ (ng?g?1) TBEP/ (ng?g?1) TEHP/ (ng?g?1) TCIPP/ (ng?g?1) TDCIPP/ (ng?g?1) TCEP/ (ng?g?1) TPhP/ (ng?g?1) EHDPP/ (ng?g?1) TPPO/ (ng?g?1) TCrP/ (ng?g?1) ΣOPEs/ (ng?g?1) References Dalian, China PVC wallpaper(n=3) 2?13.8 10.2?16.9 9984?12830 1124?1831 102.6?175.8 1703?2806 86.86?171.7 105.4?118.8 33.651?39 114.9?126.8 44460-48470 [51] Gypsum(n=2) 8.8?29.8 2.6?2.8 0.5?0.5 3.1?36.6 0.001?0.3 0.3?7.8 0.1?0.4 0.02?0.9 0.4?0.9 0.01?0.5 3.11?80.5 Puttypowdr(n=2) 0.1?3.1 0.3?0.7 0.2?0.9 0.6?5.8 1.9?2.1 0.02?1.4 0.2?0.5 0.08?0.9 0.1?0.6 0.05?0.6 2.20?16.3 Latex paint(n=6) 105.1?117.4 12?18.9 9.3?17.2 7.8?31.9 81.4?156.7 7.8?13.3 10.4?11.7 27.3?28.1 11.5?21.4 12.4?17.9 64.5?428 Solid wood(n=4) 12.5?33.5 35.3?50.8 55.5?60 59.4?95.4 6.7?7 72?127 464?814 865?1720 5.6?9.1 4.8?4.9 1620?2790 Porcelain glue(n=6) 34.8?77.3 10?20.8 9.6?16.4 652?759 880?1810 97.4?98.4 3.2?3.2 10.6?12.5 69.7?138 3.8?4.5 1770?2290 Sealant(n=7) 746?1910 9.1?13.7 13.2?17.8 181?247 672?1580 67.1?106 24.4?31.9 5.7?9.2 4.6?7 1.4?3.7 1720?2360 Shenzhen, China Textiles(n=8) 22.9?28.6 21.5?25.1 22?27.1 [52] America Polyurethane foams(n=102) 44,870,000
(Mean)41,770,000
(Mean)[53] Polyurethane foams(n=115) 0.8–46 0.53–88.1 0.0013–15 [54] Japan TV rear cover(n=12) 1.5–16 <80 0.9–80 4–26 <2 4–9.0 870–14,000,000 47–4,500,000 [48] Curtain(n=2) 1300–1600 <80 <0.9 <3.0 <2 4–6.0 820,000–840,000 4900–190,000 Heatshield(n=2) 4.8–8.8 140–890 0.9–6.4 28–37 2–6 9–10 5300–8700 190–570 www.77susu.com -
參考文獻
[1] Veen I, Boer J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere, 2012, 88(10): 1119 doi: 10.1016/j.chemosphere.2012.03.067 [2] Peng F J, Hardy E M, Béranger R, et al. Human exposure to PCBs, PBDEs and bisphenols revealed by hair analysis: A comparison between two adult female populations in China and France. Environ Pollut, 2020, 267: 115425 doi: 10.1016/j.envpol.2020.115425 [3] Xing L Q, Tao M, Zhang Q, et al. Occurrence, spatial distribution and risk assessment of organophosphate esters in surface water from the Lower Yangtze River Basin. Sci Total Environ, 2020, 734: 139380 doi: 10.1016/j.scitotenv.2020.139380 [4] Yadav I C, Devi N L, Zhong G C, et al. Occurrence and fate of organophosphate ester flame retardants and plasticizers in indoor air and dust of Nepal: Implication for human exposure. Environ Pollut, 2017, 229: 668 doi: 10.1016/j.envpol.2017.06.089 [5] Abdollahi A, Eng A, Jantunen L M, et al. Characterization of polyurethane foam (PUF) and sorbent impregnated PUF (SIP) disk passive air samplers for measuring organophosphate flame retardants. Chemosphere, 2017, 167: 212 doi: 10.1016/j.chemosphere.2016.09.111 [6] Gao X Z, Lin Y Y, Li J Y, et al. Spatial pattern analysis reveals multiple sources of organophosphorus flame retardants in coastal waters. J Hazard Mater, 2021, 417: 125882 doi: 10.1016/j.jhazmat.2021.125882 [7] Saeger V W, Hicks O, Kaley R G, et al. Environmental fate of selected phosphate esters. Environ Sci Technol, 1979, 13(7): 840 doi: 10.1021/es60155a010 [8] Kim J W, Isobe T, Chang K H, et al. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines. Environ Pollut, 2011, 159(12): 3653 doi: 10.1016/j.envpol.2011.07.020 [9] Wang Y, Li W H, Martínez-Moral M P, et al. Metabolites of organophosphate esters in urine from the United States: Concentrations, temporal variability, and exposure assessment. Environ Int, 2019, 122: 213 doi: 10.1016/j.envint.2018.11.007 [10] Shen J Y, Zhang Y Y, Yu N Y, et al. Organophosphate ester, 2-ethylhexyl diphenyl phosphate (EHDPP), elicits cytotoxic and transcriptomic effects in chicken embryonic hepatocytes and its biotransformation profile compared to humans. Environ Sci Technol, 2019, 53(4): 2151 doi: 10.1021/acs.est.8b06246 [11] Li J, Giesy J P, Yu L Q, et al. Effects of tris(1, 3-dichloro-2-propyl) phosphate (TDCPP) in tetrahymena thermophila: Targeting the ribosome. Sci Rep, 2015, 5: 10562 doi: 10.1038/srep10562 [12] Liu Y H, Li Y, Dong S S, et al. The risk and impact of organophosphate esters on the development of female-specific cancers: Comparative analysis of patients with benign and malignant tumors. J Hazard Mater, 2021, 404: 124020 doi: 10.1016/j.jhazmat.2020.124020 [13] Yang Y, Xiao Y, Chang Y Q, et al. Intestinal damage, neurotoxicity and biochemical responses caused by tris (2-chloroethyl) phosphate and tricresyl phosphate on earthworm. Ecotoxicol Environ Saf, 2018, 158: 78 doi: 10.1016/j.ecoenv.2018.04.012 [14] Persson J, Wang T, Hagberg J. Organophosphate flame retardants and plasticizers in indoor dust, air and window wipes in newly built low-energy preschools. Sci Total Environ, 2018, 628-629: 159 doi: 10.1016/j.scitotenv.2018.02.053 [15] Yin H L, Wu D, You J J, et al. Occurrence, distribution, and exposure risk of organophosphate esters in street dust from Chengdu, China. Arch Environ Contam Toxicol, 2019, 76(4): 617 doi: 10.1007/s00244-019-00602-3 [16] Yang Y, Chen P, Ma S T, et al. A critical review of human internal exposure and the health risks of organophosphate ester flame retardants and their metabolites. Crit Rev Environ Sci Technol, 2020: 1 [17] Du Z K, Wang G W, Gao S X, et al. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: By disturbing expression of the transcriptional regulators. Aquat Toxicol, 2015, 161: 25 doi: 10.1016/j.aquatox.2015.01.027 [18] Yang W Q, Zhao F, Fang Y J, et al. 1H-nuclear magnetic resonance metabolomics revealing the intrinsic relationships between neurochemical alterations and neurobehavioral and neuropathological abnormalities in rats exposed to tris(2-chloroethyl)phosphate. Chemosphere, 2018, 200: 649 doi: 10.1016/j.chemosphere.2018.02.056 [19] Chen G L, Jin Y X, Wu Y, et al. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption. Environ Toxicol Pharmacol, 2015, 40(1): 310 doi: 10.1016/j.etap.2015.06.021 [20] Liu X S, Ji K, Choi K. Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish. Aquat Toxicol, 2012, 114-115: 173 doi: 10.1016/j.aquatox.2012.02.019 [21] Eede N, Erratico C, Exarchou V, et al. In vitro biotransformation of tris(2-butoxyethyl) phosphate (TBOEP) in human liver and serum. Toxicol Appl Pharmacol, 2015, 284(2): 246 doi: 10.1016/j.taap.2015.01.021 [22] Brandsma S H, Leonards P E G, Leslie H A, et al. Tracing organophosphorus and brominated flame retardants and plasticizers in an estuarine food web. Sci Total Environ, 2015, 505: 22 doi: 10.1016/j.scitotenv.2014.08.072 [23] Katsoyiannis A, Cincinelli A. ‘Cocktails and dreams’: The indoor air quality that people are exposed to while sleeping. Curr Opin Environ Sci Heal, 2019, 8: 6 doi: 10.1016/j.coesh.2018.12.005 [24] Liagkouridis I, Cousins A P, Cousins I T. Physical-chemical properties and evaluative fate modelling of ‘emerging’ and ‘novel’ brominated and organophosphorus flame retardants in the indoor and outdoor environment. Sci Total Environ, 2015, 524-525: 416 doi: 10.1016/j.scitotenv.2015.02.106 [25] Li T Y, Bao L J, Wu C C, et al. Organophosphate flame retardants emitted from thermal treatment and open burning of e-waste. J Hazard Mater, 2019, 367: 390 doi: 10.1016/j.jhazmat.2018.12.041 [26] Kim J W, Isobe T, Muto M, et al. Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries. Chemosphere, 2014, 116: 91 doi: 10.1016/j.chemosphere.2014.02.033 [27] Chen Y X, Liu Q Y, Ma J, et al. A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure. Chemosphere, 2020, 260: 127633 doi: 10.1016/j.chemosphere.2020.127633 [28] He C T, Zheng J, Qiao L, et al. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of Southern China and implications for human exposure. Chemosphere, 2015, 133: 47 doi: 10.1016/j.chemosphere.2015.03.043 [29] Kademoglou K, Xu F C, Padilla-Sanchez J A, et al. Legacy and alternative flame retardants in Norwegian and UK indoor environment: Implications of human exposure via dust ingestion. Environ Int, 2017, 102: 48 doi: 10.1016/j.envint.2016.12.012 [30] Hamnett C. Urban housing in contemporary China: A commentary. Cities, 2021, 108: 102968 doi: 10.1016/j.cities.2020.102968 [31] Zheng X B, Xu F C, Chen K H, et al. Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China: Composition variations and implications for human exposure. Environ Int, 2015, 78: 1 doi: 10.1016/j.envint.2015.02.006 [32] Wu M, Yu G, Cao Z G, et al. Characterization and human exposure assessment of organophosphate flame retardants in indoor dust from several microenvironments of Beijing, China. Chemosphere, 2016, 150: 465 doi: 10.1016/j.chemosphere.2015.12.111 [33] Cao Z G, Xu F C, Covaci A, et al. Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure. Environ Sci Technol, 2014, 48(15): 8839 doi: 10.1021/es501224b [34] Bergh C, Torgrip R, Emenius G, et al. Organophosphate and phthalate esters in air and settled dust - a multi-location indoor study. Indoor Air, 2011, 21(1): 67 doi: 10.1111/j.1600-0668.2010.00684.x [35] Ali N, van den Eede N, Dirtu A C, et al. Assessment of human exposure to indoor organic contaminants via dust ingestion in Pakistan. Indoor Air, 2012, 22(3): 200 doi: 10.1111/j.1600-0668.2011.00757.x [36] Kim J W, Isobe T, Sudaryanto A, et al. Organophosphorus flame retardants in house dust from the Philippines: Occurrence and assessment of human exposure. Environ Sci Pollut Res, 2013, 20(2): 812 doi: 10.1007/s11356-012-1237-x [37] Brommer S, Harrad S, van den Eede N, et al. Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples. J Environ Monit, 2012, 14(9): 2482 doi: 10.1039/c2em30303e [38] Kim U J, Wang Y, Li W H, et al. Occurrence of and human exposure to organophosphate flame retardants/plasticizers in indoor air and dust from various microenvironments in the United States. Environ Int, 2019, 125: 342 doi: 10.1016/j.envint.2019.01.065 [39] Li W H, Wang Y, Asimakopoulos A G, et al. Organophosphate esters in indoor dust from 12 countries: Concentrations, composition profiles, and human exposure. Environ Int, 2019, 133: 105178 doi: 10.1016/j.envint.2019.105178 [40] Voliotis A, Bezantakos S, Besis A, et al. Mass dose rates of particle-bound organic pollutants in the human respiratory tract: Implications for inhalation exposure and risk estimations. Int J Hyg Environ Heal, 2021, 234: 113710 doi: 10.1016/j.ijheh.2021.113710 [41] Wang Y, Yang Y, Zhang Y W, et al. Polyurethane heat preservation materials: The significant sources of organophosphorus flame retardants. Chemosphere, 2019, 227: 409 doi: 10.1016/j.chemosphere.2019.04.085 [42] Karlsson M, Julander A, Bavel B, et al. Levels of brominated flame retardants in blood in relation to levels in household air and dust. Environ Int, 2007, 33(1): 62 doi: 10.1016/j.envint.2006.06.025 [43] Vykoukalová M, Venier M, Vojta ?, et al. Organophosphate esters flame retardants in the indoor environment. Environ Int, 2017, 106: 97 doi: 10.1016/j.envint.2017.05.020 [44] Cao D D, Lv K, Gao W, et al. Presence and human exposure assessment of organophosphate flame retardants (OPEs) in indoor dust and air in Beijing, China. Ecotoxicol Environ Saf, 2019, 169: 383 doi: 10.1016/j.ecoenv.2018.11.038 [45] Marklund A, Andersson B, Haglund P. Organophosphorus flame retardants and plasticizers in air from various indoor environments. J Environ Monit, 2005, 7(8): 814 doi: 10.1039/b505587c [46] Zhou L L, Hiltscher M, Gruber D, et al. Organophosphate flame retardants (OPFRs) in indoor and outdoor air in the Rhine/Main area, Germany: Comparison of concentrations and distribution profiles in different microenvironments. Environ Sci Pollut Res, 2017, 24(12): 10992 doi: 10.1007/s11356-016-6902-z [47] Tang Z W, Huang Q F, Cheng J L, et al. Polybrominated diphenyl ethers in soils, sediments, and human hair in a plastic waste recycling area: A neglected heavily polluted area. Environ Sci Technol, 2014, 48(3): 1508 doi: 10.1021/es404905u [48] Kajiwara N, Noma Y, Takigami H. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008. J Hazard Mater, 2011, 192(3): 1250 doi: 10.1016/j.jhazmat.2011.06.043 [49] Muenhor D, Harrad S. Within-room and within-building temporal and spatial variations in concentrations of polybrominated diphenyl ethers (PBDEs) in indoor dust. Environ Int, 2012, 47: 23 doi: 10.1016/j.envint.2012.06.001 [50] Ingerowski G, Friedle A, THUMULLA3 J. Chlorinated ethyl and isopropyl phosphoric acid triesters in the indoor environment - an inter-laboratory exposure study. Indoor Air, 2001, 11(3): 145 doi: 10.1034/j.1600-0668.2001.011003145.x [51] Wang Y, Hou M M, Zhang Q N, et al. Organophosphorus flame retardants and plasticizers in building and decoration materials and their potential burdens in newly decorated houses in China. Environ Sci Technol, 2017, 51(19): 10991 doi: 10.1021/acs.est.7b03367 [52] Wang C Y, Li L X, Xie T T, et al. Simultaneous determination of six kinds of banned organophosphorous flame retardants in textiles by gas chromatography tandem mass spectrometry combined with ultrasonic extraction. J Instrum Anal, 2011, 30(8): 917 doi: 10.3969/j.issn.1004-4957.2011.08.017王成云, 李麗霞, 謝堂堂, 等. 超聲萃取/氣相色譜-串聯質譜法同時測定紡織品中6種禁用有機磷阻燃劑. 分析測試學報, 2011, 30(8):917 doi: 10.3969/j.issn.1004-4957.2011.08.017 [53] Stapleton H M, Sharma S, Getzinger G, et al. Novel and high volume use flame retardants in US couches reflective of the 2005 PentaBDE phase out. Environ Sci Technol, 2012, 46(24): 13432 doi: 10.1021/es303471d [54] Hammel S C, Hoffman K, Lorenzo A M, et al. Associations between flame retardant applications in furniture foam, house dust levels, and residents’ serum levels. Environ Int, 2017, 107: 181 doi: 10.1016/j.envint.2017.07.015 [55] Tichenor B A, Guo Z, Dunn J E, et al. The interaction of vapour phase organic compounds with indoor sinks. Indoor Air, 2010, 1(1): 23 [56] Xiong J Y, Cao J P, Zhang Y P. Early stage C-history method: Rapid and accurate determination of the key SVOC emission or sorption parameters of indoor materials. Build Environ, 2016, 95: 314 doi: 10.1016/j.buildenv.2015.09.027 [57] Xu Y, Little J C. Predicting emissions of SVOCs from polymeric materials and their interaction with airborne particles. Environ Sci Technol, 2006, 40(2): 456 doi: 10.1021/es051517j [58] Cao J P, Weschler C J, Luo J J, et al. Cm-history method, a novel approach to simultaneously measure source and sink parameters important for estimating indoor exposures to phthalates. Environ Sci Technol, 2016, 50(2): 825 [59] Jia Q, Guan H Y, Guo Z B, et al. Measurement and analysis of TVOC emission and rules in reaction resin grout. Environ Chem, 2021, 40(2): 665賈祺, 關紅艷, 郭中寶, 等. 美縫劑TVOC釋放量與釋放規律的測試與分析. 環境化學, 2021, 40(2):665 [60] Yang F X, Ding J J, Huang W, et al. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter. Environ Sci Technol, 2014, 48(1): 63 doi: 10.1021/es403186z [61] Marklund A, Andersson B, Haglund P. Organophosphorus flame retardants and plasticizers in Swedish sewage treatment plants. Environ Sci Technol, 2005, 39(19): 7423 doi: 10.1021/es051013l [62] Abdallah M A E, Covaci A. Organophosphate flame retardants in indoor dust from Egypt: Implications for human exposure. Environ Sci Technol, 2014, 48(9): 4782 doi: 10.1021/es501078s [63] Cequier E, Ionas A C, Covaci A, et al. Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway. Environ Sci Technol, 2014, 48(12): 6827 doi: 10.1021/es500516u [64] Du J, Li H X, Xu S D, et al. A review of organophosphorus flame retardants (OPFRs): Occurrence, bioaccumulation, toxicity, and organism exposure. Environ Sci Pollut Res, 2019, 26(22): 22126 doi: 10.1007/s11356-019-05669-y [65] M?kinen M S, M?kinen M R, Koistinen J T, et al. Respiratory and dermal exposure to organophosphorus flame retardants and tetrabromobisphenol A at five work environments. Environ Sci Technol, 2009, 43(3): 941 doi: 10.1021/es802593t [66] Lee H K, Kang H, Lee S, et al. Human exposure to legacy and emerging flame retardants in indoor dust: A multiple-exposure assessment of PBDEs. Sci Total Environ, 2020, 719: 137386 doi: 10.1016/j.scitotenv.2020.137386 [67] Shoeib T, Webster G M, Hassan Y, et al. Organophosphate esters in house dust: A comparative study between Canada, Turkey and Egypt. Sci Total Environ, 2019, 650: 193 doi: 10.1016/j.scitotenv.2018.08.407 [68] Abou-Elwafa Abdallah M, Pawar G, Harrad S. Human dermal absorption of chlorinated organophosphate flame retardants; implications for human exposure. Toxicol Appl Pharmacol, 2016, 291: 28 doi: 10.1016/j.taap.2015.12.004 [69] Brommer S, Harrad S. Sources and human exposure implications of concentrations of organophosphate flame retardants in dust from UK cars, classrooms, living rooms, and offices. Environ Int, 2015, 83: 202 doi: 10.1016/j.envint.2015.07.002 [70] Xu F C, Giovanoulis G, van Waes S, et al. Comprehensive study of human external exposure to organophosphate flame retardants via air, dust, and hand wipes: The importance of sampling and assessment strategy. Environ Sci Technol, 2016, 50(14): 7752 doi: 10.1021/acs.est.6b00246 [71] Poma G, Sales C, Bruyland B, et al. Occurrence of organophosphorus flame retardants and plasticizers (PFRs) in Belgian foodstuffs and estimation of the dietary exposure of the adult population. Environ Sci Technol, 2018, 52(4): 2331 doi: 10.1021/acs.est.7b06395 [72] Sundkvist A M, Olofsson U, Haglund P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk. J Environ Monit, 2010, 12(4): 943 doi: 10.1039/b921910b [73] Rosenfeld P E, Feng L. Risks of Hazardous Wastes. Oxford: William Andrew, 2011 [74] Liang K, Shi F Q, Liu J F. Occurrence and distribution of oligomeric organophosphorus flame retardants in different treatment stages of a sewage treatment plant. Environ Pollut, 2018, 232: 229 doi: 10.1016/j.envpol.2017.09.036 [75] Yang Y, Ji T, Su W Y, et al. Photocatalytic NOx abatement and self-cleaning performance of cementitious composites with g-C3N4 nanosheets under visible light. Constr Build Mater, 2019, 225: 120 doi: 10.1016/j.conbuildmat.2019.07.189 [76] Yang Z W, Xiao G Q, Chen C L, et al. Synergistic decoration of organic titanium and polydopamine on boron nitride to enhance fire resistance of intumescent waterborne epoxy coating. Colloids Surf A:Physicochem Eng Aspects, 2021, 621: 126561 doi: 10.1016/j.colsurfa.2021.126561 [77] Zhao J L, Luo X D, Chen J H, et al. Progress in the application of nanotechnology to magnesia refractories. Chin J Eng, 2021, 43(1): 76趙嘉亮, 羅旭東, 陳俊紅, 等. 納米技術在鎂質耐火材料中應用的研究進展. 工程科學學報, 2021, 43(1):76 -

計量
- 文章訪問數: 1032
- HTML全文瀏覽量: 287
- PDF下載量: 47
- 被引次數: 0