<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

熱管式兩級熱電冷水機性能分析與優化

陳趙軍 孟凡凱 徐辰欣

陳趙軍, 孟凡凱, 徐辰欣. 熱管式兩級熱電冷水機性能分析與優化[J]. 工程科學學報, 2022, 44(12): 2177-2188. doi: 10.13374/j.issn2095-9389.2021.05.09.005
引用本文: 陳趙軍, 孟凡凱, 徐辰欣. 熱管式兩級熱電冷水機性能分析與優化[J]. 工程科學學報, 2022, 44(12): 2177-2188. doi: 10.13374/j.issn2095-9389.2021.05.09.005
CHEN Zhao-jun, MENG Fan-kai, XU Chen-xin. Performance analysis and optimization of two-stage heat pipe-cooled thermoelectric chiller[J]. Chinese Journal of Engineering, 2022, 44(12): 2177-2188. doi: 10.13374/j.issn2095-9389.2021.05.09.005
Citation: CHEN Zhao-jun, MENG Fan-kai, XU Chen-xin. Performance analysis and optimization of two-stage heat pipe-cooled thermoelectric chiller[J]. Chinese Journal of Engineering, 2022, 44(12): 2177-2188. doi: 10.13374/j.issn2095-9389.2021.05.09.005

熱管式兩級熱電冷水機性能分析與優化

doi: 10.13374/j.issn2095-9389.2021.05.09.005
基金項目: 國家自然科學基金資助項目(11974429);海軍工程大學自主研發計劃資助項目(425317T01C)
詳細信息
    通訊作者:

    E-mail:mfk927@qq.com

  • 中圖分類號: TB61+9.2

Performance analysis and optimization of two-stage heat pipe-cooled thermoelectric chiller

More Information
  • 摘要: 針對熱管良好的散熱能力和兩級熱電制冷器能達到更大的制冷溫差的特性,提出了一種基于熱管散熱的兩級熱電冷水機模型。基于有限時間熱力學和非平衡熱力學,考慮包括湯姆遜效應在內的各種熱電效應,用數值模擬的方法分析了恒溫熱源下工作電流、熱電單元分配比以及熱管幾何參數(熱管外徑、蒸發段長度和吸液芯厚度)對裝置制冷率、制冷系數和極限制冷溫差的影響。在熱電單元總對數一定的約束條件下,分別以制冷率和制冷系數最大為目標,以電流和熱電單元分配比為優化變量,優化了裝置性能,并分析了關鍵參數對最優變量和最優性能的影響,得到了協調制冷率和制冷系數的最優區間。通過優化熱電單元分配比和電流,裝置制冷率和制冷系數有了較大的提升。當${\Delta }{T}\text{=}\text{20?K}$x = 0.6,I = 2.5 A時,優化后的制冷率和制冷系數分別達到23.42 W和1.53,較優化前分別提高了12.11%和218.75%。

     

  • 圖  1  熱管式兩級熱電冷水機裝置示意圖

    Figure  1.  Two-stage structure of heat pipe-cooled thermoelectric water chiller

    圖  2  熱管結構示意圖

    Figure  2.  Heat pipe structure

    圖  3  熱電制冷器一維熱阻網絡

    Figure  3.  Thermoelectric cooler thermal resistance network

    圖  4  熱管等效傳熱熱阻網絡

    Figure  4.  Heat pipe resistance network

    圖  5  制冷率與熱電單元分配比和電流的關系

    Figure  5.  Cooling load versus distribution ratio of thermoelectric elements and working currents

    圖  6  制冷系數與熱電單元分配比和電流的關系

    Figure  6.  COP versus distribution ratio of thermoelectric elements and working currents

    圖  7  極限制冷溫差與熱電單元分配比和電流的關系

    Figure  7.  Extreme cooling temperature difference versus distribution ratio of thermoelectric elements and working currents

    圖  8  制冷率與熱管蒸發段長度和熱管外徑的關系

    Figure  8.  Cooling load versus evaporation length and external diameter of the heat pipe

    圖  9  制冷系數與熱管蒸發段長度和熱管外徑的關系

    Figure  9.  COP versus evaporation length and external diameter of the heat pipe

    圖  10  極限制冷溫差與熱管蒸發段長度和熱管外徑的關系

    Figure  10.  Extreme cooling temperature difference versus evaporation length and external diameter of the heat pipe

    圖  11  制冷率和制冷系數與吸液芯厚度的關系

    Figure  11.  Cooling load and COP versus wick thickness

    圖  12  極限制冷溫差與吸液芯厚度關系

    Figure  12.  Extreme cooling temperature difference versus wick thickness

    圖  13  熱電單元橫截面積對最優電流范圍的影響

    Figure  13.  Effect of the cross-section area of thermoelectric elements on the optimal range of working currents

    圖  14  熱電單元橫截面積對最優熱電單元分配比范圍的影響

    Figure  14.  Effect of the cross-section area of thermoelectric elements on the optimal range of distribution ratio of thermoelectric elements

    圖  15  熱電單元橫截面積對最優制冷率范圍的影響

    Figure  15.  Effect of the cross-section area of thermoelectric elements on the optimal range of cooling load

    圖  16  熱電單元橫截面積對最優制冷系數范圍的影響

    Figure  16.  Effect of the cross-section area of thermoelectric elements on the optimal range of COP

    圖  17  熱電單元長度對最優電流范圍的影響

    Figure  17.  Effect of length of thermoelectric elements on the optimal range of working currents

    圖  18  熱電單元長度對最優熱電單元分配比范圍的影響

    Figure  18.  Effect of length of thermoelectric elements on the optimal range of distribution ratio of thermoelectric elements

    圖  19  熱電單元長度對最優制冷率范圍的影響

    Figure  19.  Effect of length of thermoelectric elements on the optimal range of cooling load

    圖  20  熱電單元長度對最優制冷系數范圍的影響

    Figure  20.  Effect of length of thermoelectric elements on the optimal range of COP

    圖  21  制冷溫差對最優電流范圍的影響

    Figure  21.  Effect of cooling temperature difference on the optimal range of working currents

    圖  22  制冷溫差對最優熱電單元分配比范圍的影響

    Figure  22.  Effect of cooling temperature difference on the optimal range of distribution ratio of thermoelectric elements

    圖  23  制冷溫差對最優制冷率范圍的影響

    Figure  23.  Effect of cooling temperature difference on the optimal range of cooling load

    圖  24  制冷溫差對最優制冷系數范圍的影響

    Figure  24.  Effect of cooling temperature difference on the optimal range of COP

    表  1  熱電單元幾何參數與環境溫度

    Table  1.   Geometric parameters of thermoelectric elements and ambient temperature

    A / mm2L / mmNT1 / KT2 / K
    1.962300300280
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Riffat S B, Ma X L. Thermoelectrics: a review of present and potential applications. Appl Therm Eng, 2003, 23(8): 913 doi: 10.1016/S1359-4311(03)00012-7
    [2] Chen L G, Meng F K, Ge Y L, et al. Progress in thermodynamic studies for semiconductor thermoelectric devices. J Mech Eng, 2013, 49(24): 144 doi: 10.3901/JME.2013.24.144

    陳林根, 孟凡凱, 戈延林, 等. 半導體熱電裝置的熱力學研究進展. 機械工程學報, 2013, 49(24):144 doi: 10.3901/JME.2013.24.144
    [3] Yu Z M, Wu W D, Jiang B R, et al. Experimental study of nitrogen cryoprobe system based on semiconductor refrigeration pre-cooling. Cryogenics, 2014(1): 50 doi: 10.3969/j.issn.1000-6516.2014.01.009

    于子淼, 武衛東, 姜博仁, 等. 基于半導體制冷預冷的氮氣冷凍刀系統實驗研究. 低溫工程, 2014(1):50 doi: 10.3969/j.issn.1000-6516.2014.01.009
    [4] Xie W R, Qu Z C, Liu G Y, et al. Research on heat pipe and the variable condition control in semiconductor freezer. Cryog Supercond, 2013, 41(5): 69 doi: 10.3969/j.issn.1001-7100.2013.05.017

    謝萬蓉, 屈宗長, 劉公衍, 等. 半導體冰箱熱管及變工況控制的研究. 低溫與超導, 2013, 41(5):69 doi: 10.3969/j.issn.1001-7100.2013.05.017
    [5] Astrain D, Martínez A, Rodríguez A. Improvement of a thermoelectric and vapour compression hybrid refrigerator. Appl Therm Eng, 2012, 39: 140 doi: 10.1016/j.applthermaleng.2012.01.054
    [6] Miranda á G, Chen T S, Hong C W. Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles. Energy, 2013, 59: 633 doi: 10.1016/j.energy.2013.07.013
    [7] Shen L M, Xiao F, Chen H X, et al. Investigation of a novel thermoelectric radiant air-conditioning system. Energy Build, 2013, 59: 123 doi: 10.1016/j.enbuild.2012.12.041
    [8] Shen L M, Tu Z L, Hu Q, et al. The optimization design and parametric study of thermoelectric radiant cooling and heating panel. Appl Therm Eng, 2017, 112: 688 doi: 10.1016/j.applthermaleng.2016.10.094
    [9] Liu D, Zhao F Y, Yang H X, et al. Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system. Energy, 2015, 83: 29 doi: 10.1016/j.energy.2015.01.098
    [10] Fu X, Gao C, He J J, et al. The research on CPU heat elimination based on semiconductor cooler. Cryog Supercond, 2009, 37(3): 48 doi: 10.3969/j.issn.1001-7100.2009.03.014

    扶新, 高潮, 賀俊杰, 等. 基于半導體制冷器的CPU散熱研究. 低溫與超導, 2009, 37(3):48 doi: 10.3969/j.issn.1001-7100.2009.03.014
    [11] Li C C, Jiang F X, Liu C C, et al. Present and future thermoelectric materials toward wearable energy harvesting. Appl Mater Today, 2019, 15: 543 doi: 10.1016/j.apmt.2019.04.007
    [12] Wu L, Gao M, Zhang T, et al. Thermoelectric cooling application and optimization: A review. J Refrig, 2019, 40(6): 1

    吳雷, 高明, 張濤, 等. 熱電制冷的應用與優化綜述. 制冷學報, 2019, 40(6):1
    [13] Meng F K, Chen L G, Sun F R. Optimal performance of a thermoelectric generator-driven thermoelectric refrigerator system. J Eng Thermophys, 2009, 30(11): 1825 doi: 10.3321/j.issn:0253-231X.2009.11.007

    孟凡凱, 陳林根, 孫豐瑞. 熱電發電機驅動熱電制冷機聯合系統最優性能. 工程熱物理學報, 2009, 30(11):1825 doi: 10.3321/j.issn:0253-231X.2009.11.007
    [14] Meng F K, Chen L G, Ge Y L, et al. Cooling load optimization of A single-stage multi-element thermoelectric refrigerator. J Eng Thermophys, 2012, 33(12): 2025

    孟凡凱, 陳林根, 戈延林, 等. 單級多單元熱電制冷機制冷率優化. 工程熱物理學報, 2012, 33(12):2025
    [15] Chen L G, Meng F K, Sun F R. Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system. Cryogenics, 2012, 52(1): 58 doi: 10.1016/j.cryogenics.2011.10.007
    [16] Ruiz Ortega P, Olivares-Robles M. Analysis of a hybrid thermoelectric microcooler: Thomson heat and geometric optimization. Entropy, 2017, 19(7): 312 doi: 10.3390/e19070312
    [17] Pourkiaei S M, Ahmadi M H, Sadeghzadeh M, et al. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy, 2019, 186: 115849 doi: 10.1016/j.energy.2019.07.179
    [18] Nami H, Nemati A, Yari M, et al. A comprehensive thermodynamic and exergoeconomic comparison between single- and two-stage thermoelectric cooler and heater. Appl Therm Eng, 2017, 124: 756 doi: 10.1016/j.applthermaleng.2017.06.100
    [19] Xuan X C, Ng K C, Yap C, et al. The maximum temperature difference and polar characteristic of two-stage thermoelectric coolers. Cryogenics, 2002, 42(5): 273 doi: 10.1016/S0011-2275(02)00035-8
    [20] Cheng Y H, Shih C. Maximizing the cooling capacity and COP of two-stage thermoelectric coolers through genetic algorithm. Appl Therm Eng, 2006, 26(8-9): 937 doi: 10.1016/j.applthermaleng.2005.09.016
    [21] Lin S M, Yu J L. Optimization of a trapezoid-type two-stage Peltier couples for thermoelectric cooling applications. Int J Refrig, 2016, 65: 103 doi: 10.1016/j.ijrefrig.2015.12.007
    [22] Gao Y W, Lv H, Wang X D, et al. Enhanced Peltier cooling of two-stage thermoelectric cooler via pulse currents. Int J Heat Mass Transf, 2017, 114: 656 doi: 10.1016/j.ijheatmasstransfer.2017.06.102
    [23] Gao Y W, Shi C L, Wang X D. Numerical analysis for transient supercooling effect of pulse current shapes on a two-stage thermoelectric cooler. Appl Therm Eng, 2019, 163: 114416 doi: 10.1016/j.applthermaleng.2019.114416
    [24] Chen L G, Li J, Sun F R, et al. Effect of heat transfer on the performance of two-stage semiconductor thermoelectric refrigerators. J Appl Phys, 2005, 98(3): 034507 doi: 10.1063/1.2001156
    [25] Lv H, Wang X D, Meng J H, et al. Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect. Appl Energy, 2016, 175: 285 doi: 10.1016/j.apenergy.2016.05.035
    [26] Sun H N, Gil S U, Liu W, et al. Structure optimization and exergy analysis of a two-stage TEC with two different connections. Energy, 2019, 180: 175 doi: 10.1016/j.energy.2019.05.077
    [27] Chen L G, Meng F K, Ge Y L, et al. Performance optimization of a class of combined thermoelectric heating devices. Sci China Technol Sci, 2020, 63(12): 2640 doi: 10.1007/s11431-019-1518-x
    [28] Meng F, Chen L, Sun F. Performance prediction and irreversibility analysis of a thermoelectric refrigerator with finned heat exchanger. Acta Phys Pol A, 2011, 120(3): 397 doi: 10.12693/APhysPolA.120.397
    [29] Chen L G, Meng F K, Xie Z H, et al. Thermodynamic modeling and analysis of an air-cooled small space thermoelectric cooler. Eur Phys J Plus, 2020, 135: 80 doi: 10.1140/epjp/s13360-019-00020-3
    [30] Wang Z C, Cai L L, Gao P, et al. Operating characteristics analysis of thermoelectric cooler enhanced air cooling module. J Refrig, 2020, 41(2): 48 doi: 10.3969/j.issn.0253-4339.2020.02.048

    王子成, 蔡蘭蘭, 高鵬, 等. 熱電制冷強化風冷散熱模塊的工作特性分析. 制冷學報, 2020, 41(2):48 doi: 10.3969/j.issn.0253-4339.2020.02.048
    [31] Jiang F, Meng F K, Chen L G, et al. Structural design and performance analysis of a small thermoelectric chiller with variable temperature heat reservoirs. J Eng Thermophys, 2020, 41(7): 1573

    江帆, 孟凡凱, 陳林根, 等. 變溫熱源小型熱電冷水機結構設計與性能分析. 工程熱物理學報, 2020, 41(7):1573
    [32] Li Q F, Wang Y N, He X, et al. New progress in the theoretical research and application of pulsating heat pipe. Chin J Eng, 2019, 41(9): 1115

    厲青峰, 王亞楠, 何鑫, 等. 脈動熱管的理論研究與應用新進展. 工程科學學報, 2019, 41(9):1115
    [33] Jiang Y, Wang Q, Wang D, et al. Research progress of high-temperature phase change energy storage microcapsules. Chin J Eng, 2021, 43(1): 108

    江羽, 王倩, 王冬, 等. 高溫相變儲能微膠囊研究進展. 工程科學學報, 2021, 43(1):108
    [34] Riffat S B, Omer S A, Ma X L. A novel thermoelectric refrigeration system employing heat pipes and a phase change material: An experimental investigation. Renew Energy, 2001, 23(2): 313 doi: 10.1016/S0960-1481(00)00170-1
    [35] Liu D, Cai Y, Zhao F Y. Optimal design of thermoelectric cooling system integrated heat pipes for electric devices. Energy, 2017, 128: 403 doi: 10.1016/j.energy.2017.03.120
    [36] Huang S F, Lin C S, Huang J Y, et al. Experimental research on the heat dissipation of the semiconductor refrigeration system. Fluid Mach, 2021, 49(2): 77 doi: 10.3969/j.issn.1005-0329.2021.02.012

    黃雙福, 林春深, 黃金耀, 等. 半導體制冷系統熱端散熱試驗研究. 流體機械, 2021, 49(2):77 doi: 10.3969/j.issn.1005-0329.2021.02.012
    [37] Chen B C, Li T Y, Tian C H. Integrated micro flat heat pipe heat sink for thermoelectric cooler of medium voltage IGBT module. Eng J Wuhan Univ, 2021, 54(6): 524 doi: 10.14188/j.1671-8844.2021-06-007

    陳柏超, 李田月, 田翠華. 中壓IGBT模塊用熱電制冷集成微型平板熱管散熱器的研究. 武漢大學學報(工學版), 2021, 54(6):524 doi: 10.14188/j.1671-8844.2021-06-007
    [38] Meng F K, Chen L G, Sun F R. Extreme working temperature differences for thermoelectric refrigerating and heat pumping devices driven by thermoelectric generator. J Energy Inst, 2010, 83(2): 108 doi: 10.1179/014426010X12682307291506
    [39] Wang J S. Technical Manual of Electronic Radiator. Beijing: China Electric Power Press, 2011

    王健石. 電子散熱器技術手冊. 北京: 中國電力出版社, 2011
    [40] Wu Y J, Dai J X. Calculation of thermal resistance of heat transfer model of heat pipe. Energy Conserv Technol, 1983, 1(2): 47

    鄔佑靖, 戴健行. 熱管傳熱模型熱阻的計算. 節能技術, 1983, 1(2):47
    [41] Dai G S. Heat Transfer. Beijing: Higher Education Press, 1991

    戴鍋生. 傳熱學. 北京: 高等教育出版社, 1991
  • 加載中
圖(24) / 表(1)
計量
  • 文章訪問數:  375
  • HTML全文瀏覽量:  223
  • PDF下載量:  35
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-05-09
  • 網絡出版日期:  2021-10-19
  • 刊出日期:  2022-12-01

目錄

    /

    返回文章
    返回