Performance analysis and optimization of two-stage heat pipe-cooled thermoelectric chiller
-
摘要: 針對熱管良好的散熱能力和兩級熱電制冷器能達到更大的制冷溫差的特性,提出了一種基于熱管散熱的兩級熱電冷水機模型。基于有限時間熱力學和非平衡熱力學,考慮包括湯姆遜效應在內的各種熱電效應,用數值模擬的方法分析了恒溫熱源下工作電流、熱電單元分配比以及熱管幾何參數(熱管外徑、蒸發段長度和吸液芯厚度)對裝置制冷率、制冷系數和極限制冷溫差的影響。在熱電單元總對數一定的約束條件下,分別以制冷率和制冷系數最大為目標,以電流和熱電單元分配比為優化變量,優化了裝置性能,并分析了關鍵參數對最優變量和最優性能的影響,得到了協調制冷率和制冷系數的最優區間。通過優化熱電單元分配比和電流,裝置制冷率和制冷系數有了較大的提升。當
${\Delta }{T}\text{=}\text{20?K}$ ,x = 0.6,I = 2.5 A時,優化后的制冷率和制冷系數分別達到23.42 W和1.53,較優化前分別提高了12.11%和218.75%。Abstract: When compared with the traditional refrigeration method that uses a refrigerant as a working medium, thermoelectric refrigeration is a new type of solid-state active environmental protection refrigeration method. This method is based on the Peltier effect of semiconductor thermoelectric materials, which directly converts electrical energy into a temperature gradient. Thermoelectric refrigeration has the advantages of simple structure, compact structure, rapid cooling, and accurate control of refrigeration temperature. When compared with a single-stage thermoelectric cooler, a two-stage thermoelectric cooler can ensure greater cooling temperature difference and efficiency. A heat pipe is a heat transfer component that uses liquid-phase transition to transfer heat. It has good isothermal stability, efficient thermal conductivity, and small size. For good heat dissipation capacity of heat pipes and higher cooling temperature difference in two-stage thermoelectric coolers, a two-stage thermoelectric chiller model based on heat pipe heat dissipation is proposed. Based on finite-time and nonequilibrium thermodynamics, various thermoelectric effects, including the Thomson effect, are considered. The effects of working current, distribution ratio of thermoelectric elements, and heat pipe geometric parameters (heat pipe outer diameter, evaporating section length, and wick thickness) on the device-cooling load, coefficient of performance (COP), and extreme cooling temperature difference are analyzed by the numerical simulation method. Under a certain total logarithm constraint of the thermoelectric unit, the cooling load and the COP are taken as the targets. The working current and distribution ratio of thermoelectric elements are used as the variables to optimize device performance. The influence of key parameters on the optimal variables and optimal performance is analyzed, and the optimal interval of the coordinated cooling load and COP is obtained. By optimizing the distribution ratio and current of thermoelectric elements, the cooling load and COP of the device significantly improved. When${\Delta }{T}\text{}\text{=}\text{}\text{20?K}$ , x = 0.6, I = 2.5 A, the optimized cooling load and COP reach 23.42 W and 1.53, respectively, which are 12.11% and 218.75% higher than those before optimization. -
表 1 熱電單元幾何參數與環境溫度
Table 1. Geometric parameters of thermoelectric elements and ambient temperature
A / mm2 L / mm N T1 / K T2 / K 1.96 2 300 300 280 www.77susu.com -
參考文獻
[1] Riffat S B, Ma X L. Thermoelectrics: a review of present and potential applications. Appl Therm Eng, 2003, 23(8): 913 doi: 10.1016/S1359-4311(03)00012-7 [2] Chen L G, Meng F K, Ge Y L, et al. Progress in thermodynamic studies for semiconductor thermoelectric devices. J Mech Eng, 2013, 49(24): 144 doi: 10.3901/JME.2013.24.144陳林根, 孟凡凱, 戈延林, 等. 半導體熱電裝置的熱力學研究進展. 機械工程學報, 2013, 49(24):144 doi: 10.3901/JME.2013.24.144 [3] Yu Z M, Wu W D, Jiang B R, et al. Experimental study of nitrogen cryoprobe system based on semiconductor refrigeration pre-cooling. Cryogenics, 2014(1): 50 doi: 10.3969/j.issn.1000-6516.2014.01.009于子淼, 武衛東, 姜博仁, 等. 基于半導體制冷預冷的氮氣冷凍刀系統實驗研究. 低溫工程, 2014(1):50 doi: 10.3969/j.issn.1000-6516.2014.01.009 [4] Xie W R, Qu Z C, Liu G Y, et al. Research on heat pipe and the variable condition control in semiconductor freezer. Cryog Supercond, 2013, 41(5): 69 doi: 10.3969/j.issn.1001-7100.2013.05.017謝萬蓉, 屈宗長, 劉公衍, 等. 半導體冰箱熱管及變工況控制的研究. 低溫與超導, 2013, 41(5):69 doi: 10.3969/j.issn.1001-7100.2013.05.017 [5] Astrain D, Martínez A, Rodríguez A. Improvement of a thermoelectric and vapour compression hybrid refrigerator. Appl Therm Eng, 2012, 39: 140 doi: 10.1016/j.applthermaleng.2012.01.054 [6] Miranda á G, Chen T S, Hong C W. Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles. Energy, 2013, 59: 633 doi: 10.1016/j.energy.2013.07.013 [7] Shen L M, Xiao F, Chen H X, et al. Investigation of a novel thermoelectric radiant air-conditioning system. Energy Build, 2013, 59: 123 doi: 10.1016/j.enbuild.2012.12.041 [8] Shen L M, Tu Z L, Hu Q, et al. The optimization design and parametric study of thermoelectric radiant cooling and heating panel. Appl Therm Eng, 2017, 112: 688 doi: 10.1016/j.applthermaleng.2016.10.094 [9] Liu D, Zhao F Y, Yang H X, et al. Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system. Energy, 2015, 83: 29 doi: 10.1016/j.energy.2015.01.098 [10] Fu X, Gao C, He J J, et al. The research on CPU heat elimination based on semiconductor cooler. Cryog Supercond, 2009, 37(3): 48 doi: 10.3969/j.issn.1001-7100.2009.03.014扶新, 高潮, 賀俊杰, 等. 基于半導體制冷器的CPU散熱研究. 低溫與超導, 2009, 37(3):48 doi: 10.3969/j.issn.1001-7100.2009.03.014 [11] Li C C, Jiang F X, Liu C C, et al. Present and future thermoelectric materials toward wearable energy harvesting. Appl Mater Today, 2019, 15: 543 doi: 10.1016/j.apmt.2019.04.007 [12] Wu L, Gao M, Zhang T, et al. Thermoelectric cooling application and optimization: A review. J Refrig, 2019, 40(6): 1吳雷, 高明, 張濤, 等. 熱電制冷的應用與優化綜述. 制冷學報, 2019, 40(6):1 [13] Meng F K, Chen L G, Sun F R. Optimal performance of a thermoelectric generator-driven thermoelectric refrigerator system. J Eng Thermophys, 2009, 30(11): 1825 doi: 10.3321/j.issn:0253-231X.2009.11.007孟凡凱, 陳林根, 孫豐瑞. 熱電發電機驅動熱電制冷機聯合系統最優性能. 工程熱物理學報, 2009, 30(11):1825 doi: 10.3321/j.issn:0253-231X.2009.11.007 [14] Meng F K, Chen L G, Ge Y L, et al. Cooling load optimization of A single-stage multi-element thermoelectric refrigerator. J Eng Thermophys, 2012, 33(12): 2025孟凡凱, 陳林根, 戈延林, 等. 單級多單元熱電制冷機制冷率優化. 工程熱物理學報, 2012, 33(12):2025 [15] Chen L G, Meng F K, Sun F R. Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system. Cryogenics, 2012, 52(1): 58 doi: 10.1016/j.cryogenics.2011.10.007 [16] Ruiz Ortega P, Olivares-Robles M. Analysis of a hybrid thermoelectric microcooler: Thomson heat and geometric optimization. Entropy, 2017, 19(7): 312 doi: 10.3390/e19070312 [17] Pourkiaei S M, Ahmadi M H, Sadeghzadeh M, et al. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy, 2019, 186: 115849 doi: 10.1016/j.energy.2019.07.179 [18] Nami H, Nemati A, Yari M, et al. A comprehensive thermodynamic and exergoeconomic comparison between single- and two-stage thermoelectric cooler and heater. Appl Therm Eng, 2017, 124: 756 doi: 10.1016/j.applthermaleng.2017.06.100 [19] Xuan X C, Ng K C, Yap C, et al. The maximum temperature difference and polar characteristic of two-stage thermoelectric coolers. Cryogenics, 2002, 42(5): 273 doi: 10.1016/S0011-2275(02)00035-8 [20] Cheng Y H, Shih C. Maximizing the cooling capacity and COP of two-stage thermoelectric coolers through genetic algorithm. Appl Therm Eng, 2006, 26(8-9): 937 doi: 10.1016/j.applthermaleng.2005.09.016 [21] Lin S M, Yu J L. Optimization of a trapezoid-type two-stage Peltier couples for thermoelectric cooling applications. Int J Refrig, 2016, 65: 103 doi: 10.1016/j.ijrefrig.2015.12.007 [22] Gao Y W, Lv H, Wang X D, et al. Enhanced Peltier cooling of two-stage thermoelectric cooler via pulse currents. Int J Heat Mass Transf, 2017, 114: 656 doi: 10.1016/j.ijheatmasstransfer.2017.06.102 [23] Gao Y W, Shi C L, Wang X D. Numerical analysis for transient supercooling effect of pulse current shapes on a two-stage thermoelectric cooler. Appl Therm Eng, 2019, 163: 114416 doi: 10.1016/j.applthermaleng.2019.114416 [24] Chen L G, Li J, Sun F R, et al. Effect of heat transfer on the performance of two-stage semiconductor thermoelectric refrigerators. J Appl Phys, 2005, 98(3): 034507 doi: 10.1063/1.2001156 [25] Lv H, Wang X D, Meng J H, et al. Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect. Appl Energy, 2016, 175: 285 doi: 10.1016/j.apenergy.2016.05.035 [26] Sun H N, Gil S U, Liu W, et al. Structure optimization and exergy analysis of a two-stage TEC with two different connections. Energy, 2019, 180: 175 doi: 10.1016/j.energy.2019.05.077 [27] Chen L G, Meng F K, Ge Y L, et al. Performance optimization of a class of combined thermoelectric heating devices. Sci China Technol Sci, 2020, 63(12): 2640 doi: 10.1007/s11431-019-1518-x [28] Meng F, Chen L, Sun F. Performance prediction and irreversibility analysis of a thermoelectric refrigerator with finned heat exchanger. Acta Phys Pol A, 2011, 120(3): 397 doi: 10.12693/APhysPolA.120.397 [29] Chen L G, Meng F K, Xie Z H, et al. Thermodynamic modeling and analysis of an air-cooled small space thermoelectric cooler. Eur Phys J Plus, 2020, 135: 80 doi: 10.1140/epjp/s13360-019-00020-3 [30] Wang Z C, Cai L L, Gao P, et al. Operating characteristics analysis of thermoelectric cooler enhanced air cooling module. J Refrig, 2020, 41(2): 48 doi: 10.3969/j.issn.0253-4339.2020.02.048王子成, 蔡蘭蘭, 高鵬, 等. 熱電制冷強化風冷散熱模塊的工作特性分析. 制冷學報, 2020, 41(2):48 doi: 10.3969/j.issn.0253-4339.2020.02.048 [31] Jiang F, Meng F K, Chen L G, et al. Structural design and performance analysis of a small thermoelectric chiller with variable temperature heat reservoirs. J Eng Thermophys, 2020, 41(7): 1573江帆, 孟凡凱, 陳林根, 等. 變溫熱源小型熱電冷水機結構設計與性能分析. 工程熱物理學報, 2020, 41(7):1573 [32] Li Q F, Wang Y N, He X, et al. New progress in the theoretical research and application of pulsating heat pipe. Chin J Eng, 2019, 41(9): 1115厲青峰, 王亞楠, 何鑫, 等. 脈動熱管的理論研究與應用新進展. 工程科學學報, 2019, 41(9):1115 [33] Jiang Y, Wang Q, Wang D, et al. Research progress of high-temperature phase change energy storage microcapsules. Chin J Eng, 2021, 43(1): 108江羽, 王倩, 王冬, 等. 高溫相變儲能微膠囊研究進展. 工程科學學報, 2021, 43(1):108 [34] Riffat S B, Omer S A, Ma X L. A novel thermoelectric refrigeration system employing heat pipes and a phase change material: An experimental investigation. Renew Energy, 2001, 23(2): 313 doi: 10.1016/S0960-1481(00)00170-1 [35] Liu D, Cai Y, Zhao F Y. Optimal design of thermoelectric cooling system integrated heat pipes for electric devices. Energy, 2017, 128: 403 doi: 10.1016/j.energy.2017.03.120 [36] Huang S F, Lin C S, Huang J Y, et al. Experimental research on the heat dissipation of the semiconductor refrigeration system. Fluid Mach, 2021, 49(2): 77 doi: 10.3969/j.issn.1005-0329.2021.02.012黃雙福, 林春深, 黃金耀, 等. 半導體制冷系統熱端散熱試驗研究. 流體機械, 2021, 49(2):77 doi: 10.3969/j.issn.1005-0329.2021.02.012 [37] Chen B C, Li T Y, Tian C H. Integrated micro flat heat pipe heat sink for thermoelectric cooler of medium voltage IGBT module. Eng J Wuhan Univ, 2021, 54(6): 524 doi: 10.14188/j.1671-8844.2021-06-007陳柏超, 李田月, 田翠華. 中壓IGBT模塊用熱電制冷集成微型平板熱管散熱器的研究. 武漢大學學報(工學版), 2021, 54(6):524 doi: 10.14188/j.1671-8844.2021-06-007 [38] Meng F K, Chen L G, Sun F R. Extreme working temperature differences for thermoelectric refrigerating and heat pumping devices driven by thermoelectric generator. J Energy Inst, 2010, 83(2): 108 doi: 10.1179/014426010X12682307291506 [39] Wang J S. Technical Manual of Electronic Radiator. Beijing: China Electric Power Press, 2011王健石. 電子散熱器技術手冊. 北京: 中國電力出版社, 2011 [40] Wu Y J, Dai J X. Calculation of thermal resistance of heat transfer model of heat pipe. Energy Conserv Technol, 1983, 1(2): 47鄔佑靖, 戴健行. 熱管傳熱模型熱阻的計算. 節能技術, 1983, 1(2):47 [41] Dai G S. Heat Transfer. Beijing: Higher Education Press, 1991戴鍋生. 傳熱學. 北京: 高等教育出版社, 1991 -