<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

機器學習在深沖鋼質量自動判級中的應用

徐鋼 黎敏 徐金梧

徐鋼, 黎敏, 徐金梧. 機器學習在深沖鋼質量自動判級中的應用[J]. 工程科學學報, 2022, 44(6): 1062-1071. doi: 10.13374/j.issn2095-9389.2021.05.08.002
引用本文: 徐鋼, 黎敏, 徐金梧. 機器學習在深沖鋼質量自動判級中的應用[J]. 工程科學學報, 2022, 44(6): 1062-1071. doi: 10.13374/j.issn2095-9389.2021.05.08.002
XU Gang, LI Min, XU Jin-wu. Application of machine learning in automatic discrimination of product quality of deep drawn steel[J]. Chinese Journal of Engineering, 2022, 44(6): 1062-1071. doi: 10.13374/j.issn2095-9389.2021.05.08.002
Citation: XU Gang, LI Min, XU Jin-wu. Application of machine learning in automatic discrimination of product quality of deep drawn steel[J]. Chinese Journal of Engineering, 2022, 44(6): 1062-1071. doi: 10.13374/j.issn2095-9389.2021.05.08.002

機器學習在深沖鋼質量自動判級中的應用

doi: 10.13374/j.issn2095-9389.2021.05.08.002
基金項目: “十三五”國家科技支撐計劃資助項目(2015BAF30B01)
詳細信息
    通訊作者:

    E-mail: watermoon999@126.com

  • 中圖分類號: TP274

Application of machine learning in automatic discrimination of product quality of deep drawn steel

More Information
  • 摘要: 在流程工業中,生產過程需根據客戶對產品質量要求進行判級,以滿足客戶提出的產品質量需求。目前,企業主要采用“事后”抽檢方式,但因無法對所有產品實現在線自動判級,常發生索賠和退貨,導致我國鋼鐵企業每年近100億元損失。為了實現產品質量在線自動判級,提出基于高維數據非線性同等縮放與核簡支集類邊界確定相結合的質量在線智能判級方法。首先,將高維的工藝參數通過非線性同等縮放算法變換成低維的數據集,并對縮放后數據集進行聚類,分析工藝參數的類分布特征。然后,根據分類后樣本的質量指標值分布,采用核簡支集類邊界算法來確定不同產品質量級別的類邊界。最后,依據已確定的類邊界,通過質量指標預測實現產品在線判級。通過深沖鋼(IF鋼)應用實例,證實該方法在訓練階段的在線自動判級準確率達到97.2%,測試階段的準確率為96%。

     

  • 圖  1  利用簡支集確定類邊界的例子

    Figure  1.  Example of determining class boundaries using reduced sets

    圖  2  產品質量自動判級流程

    Figure  2.  Workflow for automatic discrimination of product quality

    圖  3  核參數取不同值時累積誤差分布圖

    Figure  3.  Accumulated error with different Kernel parameters

    圖  4  線性PCA方法(a)和非線性多維同等縮放方法(b)降維后的工藝參數聚類圖

    Figure  4.  Parameter distribution after reduction using PCA (a) and MDPS (b)

    圖  5  標記樣本的質量指標分布圖

    Figure  5.  Quality index distribution of labeled samples

    圖  6  三種鋼種的質量指標的上下限

    Figure  6.  Up and down limits of quality indexes for three steel types

    表  1  主要工藝參數名稱及統計值

    Table  1.   Major process parameters and statistics

    Parameter nameMaxMinMeanVariance
    Mass fraction of C/%0.00280.00110.00180.0004
    Mass fraction of Mn/%0.1600.090.12630.0154
    Mass fraction of P/%0.0140.0070.00990.0019
    Mass fraction of S/%0.01390.00610.007660.0019
    Exit temperature of heating furnace/°C1277.301247.101263.045.998
    Entry temperature of finish
    rolling/°C
    1083.941014.031039.089.804
    Exit temperature of finish
    rolling/°C
    928.46898.68917.174.167
    Coiling temperature/°C755.40654.45711.7041.358
    Cold-rolled reduction ratio/%82.9065.5080.494.139
    Heating temperature/°C854.27786.96821.9112.498
    Soaking temperature/°C854.97789.66824.2712.352
    Fast-cooling exit temperature/°C455.73299.84431.1324.296
    Aging exit temperature/°C394.12287.12374.5212.299
    Slow-cooling exit temperature/°C676.39605.97641.6111.280
    下載: 導出CSV

    表  2  汽車鋼性能指標的行標/企業內標

    Table  2.   Industry/internal standard of performance index of interstitial-free steel

    TypeYield strength/MPaTensile strength/MPaElongation/%Plastic strain ratio
    DC04210/(135?160)(270?350)/
    (260?350)
    38/(40?44)1.7/2.1
    DC05180/(125?150)(270?330)/
    (250?330)
    40/(43?46)2.0/2.2
    DC06170/(120?140)(270?330)/
    (250?330)
    41/(45?48)2.1/2.4
    下載: 導出CSV

    表  3  三種方法工藝參數類中心/類內方差數據

    Table  3.   Class center/ mean square error of quality indexes using three methods

    Quality indexesClass1(DC06)Class2(DC05)Class3(DC04)
    Yield strength/MPaCPA134.85/8.04141.65/7.63147.30/6.26
    KCPA127.53/5.55138.83/7.77143.37/8.26
    MDPS127.53/5.55135.62/6.03146.81/6.45
    Tensile strength/MPaCPA287.5/6.67290.01/8.20295.40/8.16
    KCPA280.2/6.30292.10/7.45291.58/7.48
    MDPS280.2/6.30289.71/5.64293.7/8.31
    Elongation/%CPA45.73/1.9444.88/2.3244.26/2.52
    KCPA46.45/1.7744.69/2.1845.13/2.36
    MDPS46.45/1.7745.54/1.9944.44/2.42
    Plastic strain ratioCPA2.93/0.2002.83/0.2182.74/0.200
    KCPA3.02/0.1482.87/0.1942.81/0.231
    MDPS3.02/0.1482.91/0.1952.76/0.200
    下載: 導出CSV

    表  4  不同判級和性能預測方法的計算結果

    Table  4.   Calculating results of discrimination and predicting quality index using different methods

    MethodsAccuracy/
    %
    Standard deviation
    Elongation/%Yield strength/
    MPa
    Tensile strength/
    MPa
    Plastic strain ratio
    BP91.51.95.094.540.2
    LSTM93.51.053.993.030.1
    KPLS90.71.785.355.570.16
    PLS82.11.945.775.380.19
    KNN90.12.056.285.780.19
    Synthesis96
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Chai T Y. Industrial process control systems: Research status and development direction. Sci Sin (Informationis), 2016, 46(8): 1003

    柴天佑. 工業過程控制系統研究現狀與發展方向. 中國科學:信息科學, 2016, 46(8):1003
    [2] Gehrmann C, Gunnarsson M. A digital twin based industrial automation and control system security architecture. IEEE Trans Ind Inform, 2020, 16(1): 669 doi: 10.1109/TII.2019.2938885
    [3] China Electronics Standardization Institute. Hargrove grindability index of the coal blended [J/OL]. Website Online (2007-03-02) [2022-02-22]. http://www.cesi.cn/201703/2251.html

    中國電子技術標準化研究院. 信息物理系統白皮書(2017) [J/OL]. 網絡在線 (2007-03-02) [2022-02-22]. http://www.cesi.cn/201703/2251.html
    [4] Wang L H, T?rngren M, Onori M. Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst, 2015, 37: 517 doi: 10.1016/j.jmsy.2015.04.008
    [5] Zhang C X, Cheng L L, Wang X D. Research on architecture of intelligent manufacturing based on cyber-physical system. Comput Sci, 2013, 40(Supple 1): 37

    張彩霞, 程良倫, 王向東. 基于信息物理融合系統的智能制造架構研究. 計算機科學, 2013, 40(S1): 37
    [6] Xu G. Application Research of CPS in On-Line Quality Control to Metallurgical Products [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    徐鋼. CPS在冶金產品質量在線管控中應用研究[學位論文]. 北京: 北京科技大學, 2019
    [7] Michniewicz J, Reinhart G. Cyber-Physical-Robotics - Modelling of modular robot cells for automated planning and execution of assembly tasks. Mechatronics, 2016, 34: 170 doi: 10.1016/j.mechatronics.2015.04.012
    [8] Penas O, Plateaux R, Patalano S, et al. Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems. Comput Ind, 2017, 86: 52 doi: 10.1016/j.compind.2016.12.001
    [9] Pirvu B C, Zamfirescu C B, Gorecky D. Engineering insights from an anthropocentric cyber-physical system: A case study for an assembly station. Mechatronics, 2016, 34: 147 doi: 10.1016/j.mechatronics.2015.08.010
    [10] Morgan J, O’Donnell G E. Multi-sensor process analysis and performance characterisation in CNC turning—a cyber physical system approach. Int J Adv Manuf Technol, 2017, 92(1-4): 855 doi: 10.1007/s00170-017-0113-8
    [11] Tao F, Cheng J F, Qi Q L. IIHub: an industrial Internet-of-things hub toward smart manufacturing based on cyber-physical system. IEEE Trans Ind Inform, 2018, 14(5): 2271 doi: 10.1109/TII.2017.2759178
    [12] Gehrmann C, Gunnarsson M. A digital twin based industrial automation and control system security architecture. IEEE Trans Ind Inform, 2020, 16(1): 669 doi: 10.1109/TII.2019.2938885
    [13] Wang J J, Ye L K, Gao R X, et al. Digital Twin for rotating machinery fault diagnosis in smart manufacturing. Int J Prod Res, 2019, 57(12): 3920 doi: 10.1080/00207543.2018.1552032
    [14] Knapp G L, Mukherjee T, Zuback J S, et al. Building blocks for a digital twin of additive manufacturing. Acta Mater, 2017, 135: 390 doi: 10.1016/j.actamat.2017.06.039
    [15] Barricelli B R, Casiraghi E, Fogli D. A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE Access, 2019, 7: 167653 doi: 10.1109/ACCESS.2019.2953499
    [16] Lin Z Q, Lai X M, Jin S, et al. Digital methods of complex product manufacturing precision control and its development trend. J Mech Eng, 2013, 49(6): 103 doi: 10.3901/JME.2013.06.103

    林忠欽, 來新民, 金隼, 等. 復雜產品制造精度控制的數字化方法及其發展趨勢. 機械工程學報, 2013, 49(6):103 doi: 10.3901/JME.2013.06.103
    [17] Xu G, Zhang X T, Li M, et al. Online monitoring and control method of product quality based on embedded cyber-physical system models. J Mech Eng, 2017, 53(12): 94 doi: 10.3901/JME.2017.12.094

    徐鋼, 張曉彤, 黎敏, 等. 基于嵌入式CPS模型的產品質量在線管控方法. 機械工程學報, 2017, 53(12):94 doi: 10.3901/JME.2017.12.094
    [18] Xu G, Zhang X T, Li M, et al. A method of establishing process specifications in process industry based on statistical process control. J Mech Eng, 2019, 55(8): 208 doi: 10.3901/JME.2019.08.208

    徐鋼, 張曉彤, 黎敏, 等. 基于統計過程控制的流程工業工藝規范制定方法. 機械工程學報, 2019, 55(8):208 doi: 10.3901/JME.2019.08.208
    [19] Xu G, Li M, Xu J W. Application research of on-line quality control method to metallurgical products // 2019 IEEE International Conference on Industrial Engineering and Engineering Management. Macao, 2019: 390
    [20] Morgan D, Jacobs R. Opportunities and challenges for machine learning in materials science. Annu Rev Mater Res, 2020, 50: 71 doi: 10.1146/annurev-matsci-070218-010015
    [21] Arróyave R, McDowell D L. Systems approaches to materials design: Past, present, and future. Annu Rev Mater Res, 2019, 49: 103 doi: 10.1146/annurev-matsci-070218-125955
    [22] Rosenbrock C W, Gubaev K, Shapeev A V, et al. Machine-learned interatomic potentials for alloys and alloy phase diagrams. Npj Comput Mater, 2021, 7: 24 doi: 10.1038/s41524-020-00477-2
    [23] Fan Y S, Yang X G, Shi D Q, et al. Quantitative mapping of service process-microstructural degradation-property deterioration for a Ni-based superalloy based on chord length distribution imaging process. Mater Des, 2021, 203: 109561 doi: 10.1016/j.matdes.2021.109561
    [24] Hart G L W ", Mueller T, Toher C, et al. Machine learning for alloys. Nat Rev Mater, 2021, 6(8): 730 doi: 10.1038/s41578-021-00340-w
    [25] Kondo R, Yamakawa S, Masuoka Y, et al. Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics. Acta Mater, 2017, 141: 29 doi: 10.1016/j.actamat.2017.09.004
    [26] Wang C, Shi D Q, Li S L. A study on establishing a microstructure-related hardness model with precipitate segmentation using deep learning method. Materials, 2020, 13(5): 1256 doi: 10.3390/ma13051256
    [27] Kipf T, Welling M. Semi-supervised classification with graph convolutional networks.https://doi.org/10.48550/arXiv.1609.02907
    [28] Cao N D, Kipf T. MolGAN: An implicit generative model for small molecular graphs.https://doi.org/10.48550/arXiv.1805.11973
    [29] Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press, 2004
    [30] Cutkosky A, Orabona F. Black-box reductions for parameter-free online learning in Banach spaces.https://doi.org/10.48550/arXiv.1802.06293
    [31] Mesbah A. Stochastic model predictive control: An overview and perspectives for future research. IEEE Control Syst Mag, 2016, 36(6): 30 doi: 10.1109/MCS.2016.2602087
  • 加載中
圖(6) / 表(4)
計量
  • 文章訪問數:  1150
  • HTML全文瀏覽量:  246
  • PDF下載量:  57
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-05-08
  • 網絡出版日期:  2021-10-15
  • 刊出日期:  2022-06-25

目錄

    /

    返回文章
    返回