Effect of potassium compounds in sintering flue gas on the removal of NO and dioxin performance over V2O5–WO3/TiO2 catalyst
-
摘要: 采用釩鎢鈦催化劑可有效減排燒結煙氣中NO和二噁英,而煙氣中含有的鉀鹽會造成催化劑活性降低。在實驗室采用濕式浸漬法對新鮮釩鎢鈦催化劑進行強制失活,研究了三種鉀鹽(K2SO4、K2O和KCl)負載于催化劑表面對其脫硝和脫二噁英活性的影響,并采用水洗和酸洗手段考察了失活催化劑的再生性能。結果表明,不同形態鉀鹽會造成催化劑的脫硝和脫二噁英活性降低,催化劑對兩種污染物的活性降低順序遵循相同的規律,即KCl> K2O> K2SO4。催化劑的失活機理主要包括物理失活和化學失活。物理失活主要是指鉀鹽在催化劑表面沉積并堵塞其孔道;化學失活主要是指鉀鹽與催化劑表面的活性組分產生相互作用,鈍化表面活性位點,降低表面酸性,減弱氧化和還原性能,進而降低催化劑的脫硝和脫二噁英活性。再生實驗結果表明,水洗可以一定程度上恢復催化劑的脫硝活性,酸洗會導致催化劑表面活性物質流失,但水洗和酸洗均無法有效恢復催化劑的脫二噁英活性。最后,提出了不同形態鉀鹽對釩鎢鈦催化劑的中毒機理。
-
關鍵詞:
- 燒結煙氣 /
- 脫硝 /
- 脫二噁英 /
- V2O5?WO3/TiO2催化劑 /
- K中毒
Abstract: Sintering is one of the most important processes in iron and steel production, which provides stable sinter for the blast furnace. However, it also produces pollutants, such as sulfur dioxide (SO2), nitrogen oxide (NOx), and dioxins, which cause serious environmental problems. With the increasing pressure of environmental protection, pollutant reduction has become one of the bottlenecks restricting the development of iron and steel enterprises. Using a vanadium–tungsten–titanium catalyst can effectively reduce NO and dioxin in the sintering flue gas, while the potassium salt contained in the flue gas will reduce the activity of the catalyst. In this study, the fresh vanadium–tungsten–titanium catalyst was deactivated by the wet impregnation method in the laboratory. Effects of three potassium salts (K2SO4, K2O, and KCl) loaded on the surface of the catalyst on its denitration and dioxin removal activities were investigated. The regeneration performance of the deactivated catalyst was studied by the water washing and acid pickling process. Results confirmed that activities of denitration and dioxin removal were reduced by different potassium salts, and the order of reduction follows the sequence: KCl>K2O>K2SO4. The deactivation mechanism of the catalyst mainly includes physical deactivation and chemical deactivation. Physical deactivation is mainly caused by the deposition of potassium salts on the surface of the catalyst, blocking its pores. Chemical deactivation mainly refers to the interaction between the potassium salts and the active component on the catalyst’s surface, which inactivates the surface’s active site, weakens its oxidation reducibility, and reduces the number of acid sites on the surface, thereby decreasing the denitration and dioxin removal activities of the catalyst. Regeneration experiment results showed that water washing could restore the denitration activity of the catalyst. Acid pickling would lead to the loss of active substances on the surface of the catalyst. However, neither water washing nor acid pickling could effectively restore the dioxin removal activity of the catalyst. Finally, the poisoning mechanism of different potassium salts on the vanadium–tungsten–titanium catalyst was proposed.-
Key words:
- sintering flue gas /
- denitration /
- dedioxin /
- V2O5?WO3/TiO2 catalyst /
- potassium poisoning
-
圖 1 催化劑活性測試反應裝置
Figure 1. Schematic of the laboratory activity test of catalysts
1—Gas; 2—CB bubbler; 3—Pressure gauge; 4—Control panel; 5—Flow-control valve; 6—Inlet valve; 7—Gas mixture; 8—Preheating furnace; 9—Catalyst; 10—Heating furnace; 11—Quartz tube; 12—Gas analyzer; 13—Meteorological chromatograph
表 1 SCR催化劑化學成分(質量分數)
Table 1. Chemical composition of the SCR catalyst (mass fraction)
% TiO2 SiO2 Al2O3 WO3 V2O5 MgO S 69.12 13.07 3.77 2.55 1.80 0.97 1.26 表 2 新鮮和中毒催化劑樣品的物理吸附參數分析
Table 2. Physical adsorption parameters of fresh and poisoned catalysts
Samples BET surface
area/ (m2·g?1)Total pore volume/
(cm3·g?1)Average pore
diameter/ nmFresh 38.25 0.185 19.85 KS 31.80 0.169 21.31 KO 37.29 0.184 20.30 KC 35.36 0.181 21.45 表 3 不同形態鉀鹽負載后催化劑樣品V元素XPS結果
Table 3. XPS results of V of fresh and poisoned catalyst samples
V 2p Fresh KS KO KC Ebv/eV ω/% Ebv/eV ω/% Ebv/eV ω/% Ebv/eV ω/% V3+ 515.2 12.79 515.2 14.03 515.2 14.42 515.2 15.62 V4+ 516.2 29.40 516.4 37.34 516.3 38.45 516.5 39.21 V5+ 517.2 57.81 517.3 48.62 517.2 47.13 517.3 45.16 表 4 不同形態鉀鹽中毒的催化劑再生前后XRF分析結果
Table 4. XRF results of the poisoning catalysts before and after regeneration
Element Mass fraction of the corresponding element/% Fresh KC KC?W KC?A KO KO?W KO?A KS KS?W KS?A Ti 42.43 42.49 43.6 44.48 42.54 43.69 44.49 42.36 44.15 44.63 Si 6.11 5.60 6.14 6.06 5.77 6.11 6.05 5.69 5.91 6.03 Al 2.00 1.87 1.99 1.77 1.92 1.98 1.78 1.85 1.89 1.76 W 2.11 2.08 2.07 2.13 2.03 2.07 2.16 2.03 2.16 2.18 S 0.84 0.84 0.32 0.31 0.83 0.32 0.31 1.06 0.32 0.32 V 1.08 1.09 1.08 0.74 1.08 1.1 0.74 1.08 1.13 0.75 Ca 1.37 1.34 1.31 1.26 1.36 1.31 1.28 1.32 1.20 1.26 K 0.17 1.12 0.36 0.16 0.80 0.30 0.13 0.94 0.27 0.12 www.77susu.com -
參考文獻
[1] Yu Y, Zhu T Y, Liu X L. Progress of ultra-low emission technology for key processes of iron and steel industry in China. Iron Steel, 2019, 54(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.20190061于勇, 朱廷鈺, 劉霄龍. 中國鋼鐵行業重點工序煙氣超低排放技術進展. 鋼鐵, 2019, 54(9):1 doi: 10.13228/j.boyuan.issn0449-749x.20190061 [2] Li X, Bei N F, Hu B, et al. Mitigating NOX emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei, China. Environ Pollut, 2021, 279: 116931 doi: 10.1016/j.envpol.2021.116931 [3] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1 [4] Li S M, Liu G R, Zheng M H, et al. Unintentional production of persistent chlorinated and brominated organic pollutants during iron ore sintering processes. J Hazard Mater, 2017, 331: 63 doi: 10.1016/j.jhazmat.2017.02.027 [5] Qian L X, Chun T J, Long H M, et al. Emission reduction research and development of PCDD/Fs in the iron ore sintering. Process Saf Environ Prot, 2018, 117: 82 doi: 10.1016/j.psep.2018.04.014 [6] Zhou M J, Zhang D H. Technology integration and practice of ultra-low emission of sintering flue gas in Baosteel. Iron Steel, 2020, 55(2): 144 doi: 10.13228/j.boyuan.issn0449-749x.20190298周茂軍, 張代華. 寶鋼燒結煙氣超低排放技術集成與實踐. 鋼鐵, 2020, 55(2):144 doi: 10.13228/j.boyuan.issn0449-749x.20190298 [7] Zhang Y H, Shu H, Fan H M, et al. Research on emission characteristics and influencing factors of PM2.5 for selective catalytic reduction based on V2O5?WO3/TiO2 commercial catalysts. Proc CSEE, 2015, 35(2): 383張玉華, 束航, 范紅梅, 等. 商業V2O5?WO3/TiO2催化劑SCR脫硝過程中PM2.5的排放特性及影響因素研究. 中國電機工程學報, 2015, 35(2):383 [8] Yi H H, Zhong T T, Liu J, et al. Emissions of air pollutants from sintering flue gas in the Beijing-Tianjin-Hebei area and proposed reduction measures. J Clean Prod, 2021, 304: 126958 doi: 10.1016/j.jclepro.2021.126958 [9] He Y Y, Ford M E, Zhu M H, et al. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts. Appl Catal B:Environ, 2016, 193: 141 doi: 10.1016/j.apcatb.2016.04.022 [10] Zhao L M, Chen H B. Application of SCR flue gas denitrification technology in No. 4 sinter machine of Baosteel Co. , Ltd. Sinter Pelletizing, 2018, 43(6): 24趙利明, 陳海波. SCR煙氣脫硝技術在寶鋼股份4#燒結機的應用. 燒結球團, 2018, 43(6):24 [11] Marberger A, Ferri D, Elsener M, et al. The significance of lewis acid sites for the selective catalytic reduction of nitric oxide on vanadium-based catalysts. Angewandte Chemie Int Ed, 2016, 55(39): 11989 doi: 10.1002/anie.201605397 [12] Li X, Li J H, He X, et al. Poisoning mechanism and regeneration process of the denitration catalyst. Chem Ind Eng Prog, 2015, 34(12): 4129 doi: 10.16085/j.issn.1000-6613.2015.12.001李想, 李俊華, 何煦, 等. 煙氣脫硝催化劑中毒機制與再生技術. 化工進展, 2015, 34(12):4129 doi: 10.16085/j.issn.1000-6613.2015.12.001 [13] Yun D, Song Q, Yao Q. Mechanism and analysis of scr catalyst deactivation. Coal Convers, 2009, 32(1): 91 doi: 10.3969/j.issn.1004-4248.2009.01.020云端, 宋薔, 姚強. V2O5-WO3/TiO2 SCR催化劑的失活機理及分析. 煤炭轉化, 2009, 32(1):91 doi: 10.3969/j.issn.1004-4248.2009.01.020 [14] Qian L X, Ding L, Long H M, et al. Effect of alkali poisoning on simultaneous removal NO and dioxins over SCR catalysts for sintering flue gas. J Iron Steel Res, 2020, 32(7): 542 doi: 10.13228/j.boyuan.issn1001-0963.20200070錢立新, 丁龍, 龍紅明, 等. 堿中毒對燒結煙氣SCR催化劑脫硝脫二噁英的影響. 鋼鐵研究學報, 2020, 32(7):542 doi: 10.13228/j.boyuan.issn1001-0963.20200070 [15] Li X, Li X S, Yang R T, et al. The poisoning effects of calcium on V2O5?WO3/TiO2 catalyst for the SCR reaction: Comparison of different forms of calcium. Mol Catal, 2017, 434: 16 doi: 10.1016/j.mcat.2017.01.010 [16] Ding J, Liu Q C, Kong M, et al. Influence of arsenic in flue gas on the performance of V2O5?WO3/TiO2 catalyst in selective catalytic reduction of NOx. J Fuel Chem Technol, 2016, 44(4): 495 doi: 10.3969/j.issn.0253-2409.2016.04.016丁健, 劉清才, 孔明, 等. 燃煤煙氣中砷對V2O5?WO3/TiO2 SCR脫硝催化劑性能的影響. 燃料化學學報, 2016, 44(4):495 doi: 10.3969/j.issn.0253-2409.2016.04.016 [17] Dai Z J, Wang L L, Tang H, et al. Leaching characteristics of the heavy metals in spent vanadium and titanium SCR catalyst. Chem Ind Eng Prog, 2018, 37(10): 3873 doi: 10.16085/j.issn.1000-6613.2017-2269戴澤軍, 王樂樂, 唐浩, 等. 廢棄釩鈦系選擇性催化還原催化劑重金屬浸出特性. 化工進展, 2018, 37(10):3873 doi: 10.16085/j.issn.1000-6613.2017-2269 [18] Kong M, Liu Q C, Zhou J, et al. Effect of different potassium species on the deactivation of V2O5–WO3/TiO2 SCR catalyst: Comparison of K2SO4, KCl and K2O. Chem Eng J, 2018, 348: 637 doi: 10.1016/j.cej.2018.05.045 [19] Peng B, Zhang Y L, Yue C S, et al. Effects of recycling of sintering dust on emission of sintered fine particles. Environ Eng, 2018, 36(12): 151 doi: 10.13205/j.hjgc.201812030彭犇, 張業玲, 岳昌盛, 等. 燒結除塵灰回用對燒結細顆粒排放的影響. 環境工程, 2018, 36(12):151 doi: 10.13205/j.hjgc.201812030 [20] Qian F, Yu S J, Hou H Y, et al. Recycling of the electric dust in sintering machine head. Iron Steel, 2015, 50(12): 67 doi: 10.13228/j.boyuan.issn0449-749x.20150262錢峰, 于淑娟, 侯洪宇, 等. 燒結機頭電除塵灰資源化再利用. 鋼鐵, 2015, 50(12):67 doi: 10.13228/j.boyuan.issn0449-749x.20150262 [21] Weng X L, Xue Y H, Chen J K, et al. Elimination of chloroaromatic congeners on a commercial V2O5?WO3/TiO2 catalyst: The effect of heavy metal Pb. J Hazard Mater, 2020, 387: 121705 doi: 10.1016/j.jhazmat.2019.121705 [22] Yan M, Li X D, Chen T, et al. Effect of temperature and oxygen on the formation of chlorobenzene as the indicator of PCDD/Fs. J Environ Sci, 2010, 22(10): 1637 doi: 10.1016/S1001-0742(09)60300-4 [23] Shi Q, Long H M, Chun T J, et al. Catalytic combustion of chlorobenzene with VOx/CeO2 catalysts: Influence of catalyst synthesis method. Int J Chem React Eng, 2019, 17(12): 20190084 [24] Alemany L J, Lietti L, Ferlazzo N, et al. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts. J Catal, 1995, 155(1): 117 doi: 10.1006/jcat.1995.1193 [25] Li S C, Huang W J, Xu H M, et al. Alkali-induced deactivation mechanism of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO by NH3 in aluminum hydrate calcining flue gas. Appl Catal B:Environ, 2020, 270: 118872 doi: 10.1016/j.apcatb.2020.118872 [26] Jung S M, Grange P. Characterization and reactivity of pure TiO2-SO42? SCR catalyst: Influence of SO42? content. Catal Today, 2000, 59(3-4): 305 doi: 10.1016/S0920-5861(00)00296-0 [27] Zhang X J, Wang J K, Song Z X, et al. Promotion of surface acidity and surface species of doped Fe and SO42? over CeO2 catalytic for NH3-SCR reaction. Mol Catal, 2019, 463: 1 doi: 10.1016/j.mcat.2018.11.002 [28] Jiang Y, Gao X, Zhang Y X, et al. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts. J Hazard Mater, 2014, 274: 270 doi: 10.1016/j.jhazmat.2014.04.026 [29] Tops?e N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science, 1994, 265(5176): 1217 doi: 10.1126/science.265.5176.1217 [30] Odenbrand C U I. CaSO4 deactivated V2O5–WO3/TiO2 SCR catalyst for a diesel power plant. Characterization and simulation of the kinetics of the SCR reactions. Appl Catal B:Environ, 2018, 234: 365 [31] Gu T T, Liu Y, Weng X L, et al. The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3. Catal Commun, 2010, 12(4): 310 doi: 10.1016/j.catcom.2010.10.003 [32] Ramis G, Yi L, Busca G. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study. Catal Today, 1996, 28(4): 373 doi: 10.1016/S0920-5861(96)00050-8 [33] Kong M, Liu Q C, Zhu B H, et al. Synergy of KCl and Hgel on selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts. Chem Eng J, 2015, 264: 815 doi: 10.1016/j.cej.2014.12.038 -