<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

燒結煙氣中含鉀化合物對釩鎢鈦催化劑脫硝/二噁英性能的影響

丁龍 楊濤 錢立新 張洪亮 魏進超 楊本濤 龍紅明

丁龍, 楊濤, 錢立新, 張洪亮, 魏進超, 楊本濤, 龍紅明. 燒結煙氣中含鉀化合物對釩鎢鈦催化劑脫硝/二噁英性能的影響[J]. 工程科學學報, 2022, 44(12): 2189-2199. doi: 10.13374/j.issn2095-9389.2021.05.07.005
引用本文: 丁龍, 楊濤, 錢立新, 張洪亮, 魏進超, 楊本濤, 龍紅明. 燒結煙氣中含鉀化合物對釩鎢鈦催化劑脫硝/二噁英性能的影響[J]. 工程科學學報, 2022, 44(12): 2189-2199. doi: 10.13374/j.issn2095-9389.2021.05.07.005
DING Long, YANG Tao, QIAN Li-xin, ZHANG Hong-liang, WEI Jin-chao, YANG Ben-tao, LONG Hong-ming. Effect of potassium compounds in sintering flue gas on the removal of NO and dioxin performance over V2O5–WO3/TiO2 catalyst[J]. Chinese Journal of Engineering, 2022, 44(12): 2189-2199. doi: 10.13374/j.issn2095-9389.2021.05.07.005
Citation: DING Long, YANG Tao, QIAN Li-xin, ZHANG Hong-liang, WEI Jin-chao, YANG Ben-tao, LONG Hong-ming. Effect of potassium compounds in sintering flue gas on the removal of NO and dioxin performance over V2O5–WO3/TiO2 catalyst[J]. Chinese Journal of Engineering, 2022, 44(12): 2189-2199. doi: 10.13374/j.issn2095-9389.2021.05.07.005

燒結煙氣中含鉀化合物對釩鎢鈦催化劑脫硝/二噁英性能的影響

doi: 10.13374/j.issn2095-9389.2021.05.07.005
基金項目: 國家自然科學基金面上資助項目(51674002);中冶長天科研開發基礎研究基金資助項目(2020JCYJ13)
詳細信息
    通訊作者:

    E-mail: yaflhm@126.com

  • 中圖分類號: O643.3

Effect of potassium compounds in sintering flue gas on the removal of NO and dioxin performance over V2O5–WO3/TiO2 catalyst

More Information
  • 摘要: 采用釩鎢鈦催化劑可有效減排燒結煙氣中NO和二噁英,而煙氣中含有的鉀鹽會造成催化劑活性降低。在實驗室采用濕式浸漬法對新鮮釩鎢鈦催化劑進行強制失活,研究了三種鉀鹽(K2SO4、K2O和KCl)負載于催化劑表面對其脫硝和脫二噁英活性的影響,并采用水洗和酸洗手段考察了失活催化劑的再生性能。結果表明,不同形態鉀鹽會造成催化劑的脫硝和脫二噁英活性降低,催化劑對兩種污染物的活性降低順序遵循相同的規律,即KCl> K2O> K2SO4。催化劑的失活機理主要包括物理失活和化學失活。物理失活主要是指鉀鹽在催化劑表面沉積并堵塞其孔道;化學失活主要是指鉀鹽與催化劑表面的活性組分產生相互作用,鈍化表面活性位點,降低表面酸性,減弱氧化和還原性能,進而降低催化劑的脫硝和脫二噁英活性。再生實驗結果表明,水洗可以一定程度上恢復催化劑的脫硝活性,酸洗會導致催化劑表面活性物質流失,但水洗和酸洗均無法有效恢復催化劑的脫二噁英活性。最后,提出了不同形態鉀鹽對釩鎢鈦催化劑的中毒機理。

     

  • 圖  1  催化劑活性測試反應裝置

    Figure  1.  Schematic of the laboratory activity test of catalysts

    1—Gas; 2—CB bubbler; 3—Pressure gauge; 4—Control panel; 5—Flow-control valve; 6—Inlet valve; 7—Gas mixture; 8—Preheating furnace; 9—Catalyst; 10—Heating furnace; 11—Quartz tube; 12—Gas analyzer; 13—Meteorological chromatograph

    圖  2  不同形態鉀鹽中毒對催化劑活性的影響. (a) 脫硝活性; (b) CB降解活性

    Figure  2.  Catalytic activity of catalysts poisoned by different K+ species: (a) NO conversion; (b) CB conversion

    圖  3  不同形態鉀鹽負載后催化劑的XRD圖譜

    Figure  3.  XRD patterns of catalysts poisoned by different K+ species

    圖  4  不同形態鉀鹽負載后催化劑的H2-TPR圖譜

    Figure  4.  H2-TPR profiles of catalysts poisoned by different K+ species

    圖  5  不同形態鉀鹽負載后催化劑的NH3-TPD圖譜

    Figure  5.  NH3-TPD profiles of catalysts poisoned by different K+ species

    圖  6  不同形態鉀鹽負載后催化劑的XPS圖譜. (a) Ti 2p; (b) W 4f; (c) V 2p; (d) O 1s

    Figure  6.  XPS profiles of catalysts poisoned by different K+ species: (a) Ti 2p; (b) W 4f; (c) V 2p; (d) O 1s

    圖  7  新鮮與中毒催化劑的FT?IR圖譜

    Figure  7.  FT?IR profiles of fresh and poisoned catalysts

    圖  8  再生催化劑脫硝活性檢測

    Figure  8.  Denitration activity of the regenerated catalyst

    圖  9  再生催化劑CB降解活性檢測

    Figure  9.  CB degradation activity of the regenerated catalyst

    圖  10  鉀鹽對VWTi催化劑的失活機理. (a) K2SO4; (b) K2O; (c) KCl

    Figure  10.  Deactivation mechanism of kali salts on the VWTi catalyst: (a) K2SO4 ; (b) K2O; (c) KCl

    表  1  SCR催化劑化學成分(質量分數)

    Table  1.   Chemical composition of the SCR catalyst (mass fraction) %

    TiO2SiO2Al2O3WO3V2O5MgOS
    69.1213.073.772.551.800.971.26
    下載: 導出CSV

    表  2  新鮮和中毒催化劑樣品的物理吸附參數分析

    Table  2.   Physical adsorption parameters of fresh and poisoned catalysts

    SamplesBET surface
    area/ (m2·g?1)
    Total pore volume/
    (cm3·g?1)
    Average pore
    diameter/ nm
    Fresh38.250.18519.85
    KS31.800.16921.31
    KO37.290.18420.30
    KC35.360.18121.45
    下載: 導出CSV

    表  3  不同形態鉀鹽負載后催化劑樣品V元素XPS結果

    Table  3.   XPS results of V of fresh and poisoned catalyst samples

    V 2pFreshKS KO KC
    Ebv/eVω/%Ebv/eVω/%Ebv/eVω/%Ebv/eVω/%
    V3+515.212.79 515.214.03 515.214.42 515.215.62
    V4+516.229.40 516.437.34 516.338.45 516.539.21
    V5+517.257.81 517.348.62 517.247.13 517.345.16
    下載: 導出CSV

    表  4  不同形態鉀鹽中毒的催化劑再生前后XRF分析結果

    Table  4.   XRF results of the poisoning catalysts before and after regeneration

    ElementMass fraction of the corresponding element/%
    FreshKCKC?WKC?AKOKO?WKO?AKSKS?WKS?A
    Ti42.4342.4943.644.4842.5443.6944.4942.3644.1544.63
    Si6.115.606.146.065.776.116.055.695.916.03
    Al2.001.871.991.771.921.981.781.851.891.76
    W2.112.082.072.132.032.072.162.032.162.18
    S0.840.840.320.310.830.320.311.060.320.32
    V1.081.091.080.741.081.10.741.081.130.75
    Ca1.371.341.311.261.361.311.281.321.201.26
    K0.171.120.360.160.800.300.130.940.270.12
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yu Y, Zhu T Y, Liu X L. Progress of ultra-low emission technology for key processes of iron and steel industry in China. Iron Steel, 2019, 54(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.20190061

    于勇, 朱廷鈺, 劉霄龍. 中國鋼鐵行業重點工序煙氣超低排放技術進展. 鋼鐵, 2019, 54(9):1 doi: 10.13228/j.boyuan.issn0449-749x.20190061
    [2] Li X, Bei N F, Hu B, et al. Mitigating NOX emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei, China. Environ Pollut, 2021, 279: 116931 doi: 10.1016/j.envpol.2021.116931
    [3] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1

    邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1
    [4] Li S M, Liu G R, Zheng M H, et al. Unintentional production of persistent chlorinated and brominated organic pollutants during iron ore sintering processes. J Hazard Mater, 2017, 331: 63 doi: 10.1016/j.jhazmat.2017.02.027
    [5] Qian L X, Chun T J, Long H M, et al. Emission reduction research and development of PCDD/Fs in the iron ore sintering. Process Saf Environ Prot, 2018, 117: 82 doi: 10.1016/j.psep.2018.04.014
    [6] Zhou M J, Zhang D H. Technology integration and practice of ultra-low emission of sintering flue gas in Baosteel. Iron Steel, 2020, 55(2): 144 doi: 10.13228/j.boyuan.issn0449-749x.20190298

    周茂軍, 張代華. 寶鋼燒結煙氣超低排放技術集成與實踐. 鋼鐵, 2020, 55(2):144 doi: 10.13228/j.boyuan.issn0449-749x.20190298
    [7] Zhang Y H, Shu H, Fan H M, et al. Research on emission characteristics and influencing factors of PM2.5 for selective catalytic reduction based on V2O5?WO3/TiO2 commercial catalysts. Proc CSEE, 2015, 35(2): 383

    張玉華, 束航, 范紅梅, 等. 商業V2O5?WO3/TiO2催化劑SCR脫硝過程中PM2.5的排放特性及影響因素研究. 中國電機工程學報, 2015, 35(2):383
    [8] Yi H H, Zhong T T, Liu J, et al. Emissions of air pollutants from sintering flue gas in the Beijing-Tianjin-Hebei area and proposed reduction measures. J Clean Prod, 2021, 304: 126958 doi: 10.1016/j.jclepro.2021.126958
    [9] He Y Y, Ford M E, Zhu M H, et al. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts. Appl Catal B:Environ, 2016, 193: 141 doi: 10.1016/j.apcatb.2016.04.022
    [10] Zhao L M, Chen H B. Application of SCR flue gas denitrification technology in No. 4 sinter machine of Baosteel Co. , Ltd. Sinter Pelletizing, 2018, 43(6): 24

    趙利明, 陳海波. SCR煙氣脫硝技術在寶鋼股份4#燒結機的應用. 燒結球團, 2018, 43(6):24
    [11] Marberger A, Ferri D, Elsener M, et al. The significance of lewis acid sites for the selective catalytic reduction of nitric oxide on vanadium-based catalysts. Angewandte Chemie Int Ed, 2016, 55(39): 11989 doi: 10.1002/anie.201605397
    [12] Li X, Li J H, He X, et al. Poisoning mechanism and regeneration process of the denitration catalyst. Chem Ind Eng Prog, 2015, 34(12): 4129 doi: 10.16085/j.issn.1000-6613.2015.12.001

    李想, 李俊華, 何煦, 等. 煙氣脫硝催化劑中毒機制與再生技術. 化工進展, 2015, 34(12):4129 doi: 10.16085/j.issn.1000-6613.2015.12.001
    [13] Yun D, Song Q, Yao Q. Mechanism and analysis of scr catalyst deactivation. Coal Convers, 2009, 32(1): 91 doi: 10.3969/j.issn.1004-4248.2009.01.020

    云端, 宋薔, 姚強. V2O5-WO3/TiO2 SCR催化劑的失活機理及分析. 煤炭轉化, 2009, 32(1):91 doi: 10.3969/j.issn.1004-4248.2009.01.020
    [14] Qian L X, Ding L, Long H M, et al. Effect of alkali poisoning on simultaneous removal NO and dioxins over SCR catalysts for sintering flue gas. J Iron Steel Res, 2020, 32(7): 542 doi: 10.13228/j.boyuan.issn1001-0963.20200070

    錢立新, 丁龍, 龍紅明, 等. 堿中毒對燒結煙氣SCR催化劑脫硝脫二噁英的影響. 鋼鐵研究學報, 2020, 32(7):542 doi: 10.13228/j.boyuan.issn1001-0963.20200070
    [15] Li X, Li X S, Yang R T, et al. The poisoning effects of calcium on V2O5?WO3/TiO2 catalyst for the SCR reaction: Comparison of different forms of calcium. Mol Catal, 2017, 434: 16 doi: 10.1016/j.mcat.2017.01.010
    [16] Ding J, Liu Q C, Kong M, et al. Influence of arsenic in flue gas on the performance of V2O5?WO3/TiO2 catalyst in selective catalytic reduction of NOx. J Fuel Chem Technol, 2016, 44(4): 495 doi: 10.3969/j.issn.0253-2409.2016.04.016

    丁健, 劉清才, 孔明, 等. 燃煤煙氣中砷對V2O5?WO3/TiO2 SCR脫硝催化劑性能的影響. 燃料化學學報, 2016, 44(4):495 doi: 10.3969/j.issn.0253-2409.2016.04.016
    [17] Dai Z J, Wang L L, Tang H, et al. Leaching characteristics of the heavy metals in spent vanadium and titanium SCR catalyst. Chem Ind Eng Prog, 2018, 37(10): 3873 doi: 10.16085/j.issn.1000-6613.2017-2269

    戴澤軍, 王樂樂, 唐浩, 等. 廢棄釩鈦系選擇性催化還原催化劑重金屬浸出特性. 化工進展, 2018, 37(10):3873 doi: 10.16085/j.issn.1000-6613.2017-2269
    [18] Kong M, Liu Q C, Zhou J, et al. Effect of different potassium species on the deactivation of V2O5–WO3/TiO2 SCR catalyst: Comparison of K2SO4, KCl and K2O. Chem Eng J, 2018, 348: 637 doi: 10.1016/j.cej.2018.05.045
    [19] Peng B, Zhang Y L, Yue C S, et al. Effects of recycling of sintering dust on emission of sintered fine particles. Environ Eng, 2018, 36(12): 151 doi: 10.13205/j.hjgc.201812030

    彭犇, 張業玲, 岳昌盛, 等. 燒結除塵灰回用對燒結細顆粒排放的影響. 環境工程, 2018, 36(12):151 doi: 10.13205/j.hjgc.201812030
    [20] Qian F, Yu S J, Hou H Y, et al. Recycling of the electric dust in sintering machine head. Iron Steel, 2015, 50(12): 67 doi: 10.13228/j.boyuan.issn0449-749x.20150262

    錢峰, 于淑娟, 侯洪宇, 等. 燒結機頭電除塵灰資源化再利用. 鋼鐵, 2015, 50(12):67 doi: 10.13228/j.boyuan.issn0449-749x.20150262
    [21] Weng X L, Xue Y H, Chen J K, et al. Elimination of chloroaromatic congeners on a commercial V2O5?WO3/TiO2 catalyst: The effect of heavy metal Pb. J Hazard Mater, 2020, 387: 121705 doi: 10.1016/j.jhazmat.2019.121705
    [22] Yan M, Li X D, Chen T, et al. Effect of temperature and oxygen on the formation of chlorobenzene as the indicator of PCDD/Fs. J Environ Sci, 2010, 22(10): 1637 doi: 10.1016/S1001-0742(09)60300-4
    [23] Shi Q, Long H M, Chun T J, et al. Catalytic combustion of chlorobenzene with VOx/CeO2 catalysts: Influence of catalyst synthesis method. Int J Chem React Eng, 2019, 17(12): 20190084
    [24] Alemany L J, Lietti L, Ferlazzo N, et al. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts. J Catal, 1995, 155(1): 117 doi: 10.1006/jcat.1995.1193
    [25] Li S C, Huang W J, Xu H M, et al. Alkali-induced deactivation mechanism of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO by NH3 in aluminum hydrate calcining flue gas. Appl Catal B:Environ, 2020, 270: 118872 doi: 10.1016/j.apcatb.2020.118872
    [26] Jung S M, Grange P. Characterization and reactivity of pure TiO2-SO42? SCR catalyst: Influence of SO42? content. Catal Today, 2000, 59(3-4): 305 doi: 10.1016/S0920-5861(00)00296-0
    [27] Zhang X J, Wang J K, Song Z X, et al. Promotion of surface acidity and surface species of doped Fe and SO42? over CeO2 catalytic for NH3-SCR reaction. Mol Catal, 2019, 463: 1 doi: 10.1016/j.mcat.2018.11.002
    [28] Jiang Y, Gao X, Zhang Y X, et al. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts. J Hazard Mater, 2014, 274: 270 doi: 10.1016/j.jhazmat.2014.04.026
    [29] Tops?e N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science, 1994, 265(5176): 1217 doi: 10.1126/science.265.5176.1217
    [30] Odenbrand C U I. CaSO4 deactivated V2O5–WO3/TiO2 SCR catalyst for a diesel power plant. Characterization and simulation of the kinetics of the SCR reactions. Appl Catal B:Environ, 2018, 234: 365
    [31] Gu T T, Liu Y, Weng X L, et al. The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3. Catal Commun, 2010, 12(4): 310 doi: 10.1016/j.catcom.2010.10.003
    [32] Ramis G, Yi L, Busca G. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study. Catal Today, 1996, 28(4): 373 doi: 10.1016/S0920-5861(96)00050-8
    [33] Kong M, Liu Q C, Zhu B H, et al. Synergy of KCl and Hgel on selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts. Chem Eng J, 2015, 264: 815 doi: 10.1016/j.cej.2014.12.038
  • 加載中
圖(10) / 表(4)
計量
  • 文章訪問數:  514
  • HTML全文瀏覽量:  276
  • PDF下載量:  66
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-05-07
  • 網絡出版日期:  2021-07-18
  • 刊出日期:  2022-12-01

目錄

    /

    返回文章
    返回