-
摘要: 膜增濕器為質子交換膜燃料電池水熱管理系統的關鍵部件,本研究考慮與燃料電池工作條件的強耦合,系統地進行了膜增濕器運行參數和幾何參數的敏感性仿真分析。基于Matlab/Simulink建立了膜增濕器穩態數學模型,分析了濕側和干側的入口質量流量、溫度和壓力以及膜厚度和面積對膜增濕器傳熱量、水分傳遞量、干側出口相對濕度和水分傳遞率的影響。研究表明:提高入口質量流量會提高傳熱量,并且能有效提高水分傳遞量,但會使水分傳遞率和出口相對濕度降低;干濕兩側溫度的增加可以使膜中水的擴散系數和水傳遞量增加,但過高的溫度會顯著提高水蒸氣飽和壓力,降低水的活度,進而降低膜含水量,不利于水的傳遞;壓力的變化對傳熱的影響很小,但總壓的提高會使濕側入口含濕量下降,水分傳遞量下降,但水分傳遞率升高;較大的膜面積以及較低的膜厚度能夠提高膜水分傳遞量和水分傳遞率,可以有效地提高膜增濕器和燃料電池系統水熱管理性能。Abstract: The liquid water produced by an electrochemical reaction at the cathode of a proton exchange membrane fuel cell blocks the pores in the gas diffusion layer, resulting in “water flooding.” At the same time, membrane dehydration leads to serious ohmic polarization. Discharging liquid water from the stack as soon as possible to ensure the wetting of the proton exchange membrane is a key problem. A membrane humidifier is a key component of a proton exchange membrane fuel cell system for water and thermal management. By considering coupling with the working conditions of a fuel cell, systematic sensitivity simulation analysis of the operating and geometric parameters of the membrane humidifier was carried out. The steady-state mathematical model of the membrane humidifier was established based on Matlab/Simulink. The influences of the inlet mass flow rate, temperature, and pressure, membrane thickness and area on heat transfer, water transfer, relative humidity, and water transfer rate of the membrane humidifier on the wet and dry sides were analyzed. The main conclusions are as follows: Improving the inlet mass flow rate can effectively improve the heat transfer and water transfer quantity, yet reduces the water transfer rate and the relative humidity at the drying side outlet. The increase in temperature on both dry and wet sides can improve the diffusion coefficient and transfer capacity of water in the membrane; however, high temperature significantly increases the saturation pressure of water vapor, reduce water activity, and then reduce the water content of the membrane, which is not conducive for water transfer. The change in pressure has little effect on heat transfer; however, an increase in the total pressure reduces the inlet moisture content and water transfer capacity while increasing the water transfer rate. A larger membrane area and a lower membrane thickness can improve the film moisture transfer and water transfer rates, which can effectively improve the membrane humidifier and fuel cell system hydrothermal management performance.
-
表 1 工況參數
Table 1. Operating parameters
Parameters Values Inlet temperature of wet channel,T1,in/K 353 Inlet temperature of dry channel,T2,in/K 293 Gauge pressure of wet channel,P1,in/MPa 0.2 Gauge pressure of dry channel,P2,in/MPa 0.2 Mass ratio of wet channel,w(O2):w(H2O):w(N2) 0.2:0.16:0.64 Mass ratio of dry channel,w(O2):w(N2) 0.233:0.767 Inlet mass flow rate of wet channel,m1,in/(kg?s–1) 0.0412 Inlet mass flow rate of dry channel,m2,in/ (kg?s–1) 0.0382 Membrane thickness,δm/m 5 × 10?5 Membrane area,A/m2 0.1 Heat transfer coefficient,k/ (W? m–2?K–1) 100 Dry density of membrane,ρm,dry/ (kg?m–3) 2000 Equivalent mass of membrane,Mm,dry/ (kg?mol–1) 1.1 www.77susu.com -
參考文獻
[1] Zhang T, Wang P Q, Chen H C, et al. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Appl Energy, 2018, 223: 249 doi: 10.1016/j.apenergy.2018.04.049 [2] Chen H C, Zhao X, Zhang T, et al. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: A review. Energy Convers Manag, 2019, 182: 282 doi: 10.1016/j.enconman.2018.12.049 [3] Feng L L, Chen Y, Li J G, et al. Research progress in carbon-based composite molded bipolar plates. Chin J Eng, 2021, 43(5): 585馮利利, 陳越, 李吉剛, 等. 碳基復合材料模壓雙極板研究進展. 工程科學學報, 2021, 43(5):585 [4] Lin X Y, Xia Y T, Wei S S. Energy management control strategy for plug-in fuel cell electric vehicle based on reinforcement learning algorithm. Chin J Eng, 2019, 41(10): 1332林歆悠, 夏玉田, 魏申申. 基于增強學習算法的插電式燃料電池電動汽車能量管理控制策略. 工程科學學報, 2019, 41(10):1332 [5] Chen D M, Li W, Peng H E. An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control. J Power Sources, 2008, 180(1): 461 doi: 10.1016/j.jpowsour.2008.02.055 [6] Vasu G, Tangirala A K, Viswanathan B, et al. Continuous bubble humidification and control of relative humidity of H2 for a PEMFC system. Int J Hydrog Energy, 2008, 33(17): 4640 doi: 10.1016/j.ijhydene.2008.05.051 [7] Natarajan D, Nguyen T. Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell. J Power Sources, 2003, 115(1): 66 doi: 10.1016/S0378-7753(02)00624-9 [8] Li H, Tang Y H, Wang Z W, et al. A review of water flooding issues in the proton exchange membrane fuel cell. J Power Sources, 2008, 178(1): 103 doi: 10.1016/j.jpowsour.2007.12.068 [9] Réguillet V, Vaudrey A, Moutin S, et al. Definition of efficiency criteria for a fuel cell humidifier: Application to a low power proton exchange membrane fuel cell system for negative surrounding temperatures. Appl Therm Eng, 2013, 58(1-2): 382 doi: 10.1016/j.applthermaleng.2013.03.055 [10] Casalegno A, De Antonellis S, Colombo L, et al. Design of an innovative enthalpy wheel based humidification system for polymer electrolyte fuel cell. Int J Hydrog Energy, 2011, 36(8): 5000 doi: 10.1016/j.ijhydene.2011.01.012 [11] Pourrahmani H, Moghimi M, Siavashi M. Thermal management in PEMFCs: The respective effects of porous media in the gas flow channel. Int J Hydrog Energy, 2019, 44(5): 3121 doi: 10.1016/j.ijhydene.2018.11.222 [12] Pourrahmani H, Moghimi M, Siavashi M, et al. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs. Appl Therm Eng, 2019, 150: 433 doi: 10.1016/j.applthermaleng.2019.01.010 [13] Pourrahmani H, Siavashi M, Moghimi M. Design optimization and thermal management of the PEMFC using artificial neural networks. Energy, 2019, 182: 443 doi: 10.1016/j.energy.2019.06.019 [14] Chang Y F, Qin Y Z, Yin Y, et al. Humidification strategy for polymer electrolyte membrane fuel cells-A review. Appl Energy, 2018, 230: 643 doi: 10.1016/j.apenergy.2018.08.125 [15] Lao X S, Liu Y, Dai C H, et al. Study on heat and mass transfer performance of cathode membrane humidifier in fuel cell system. IOP Conf Ser:Earth Environ Sci, 2020, 581: 012011 doi: 10.1088/1755-1315/581/1/012011 [16] Yu S, Im S, Kim S, et al. A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization. Int J Heat Mass Transf, 2011, 54(7-8): 1344 doi: 10.1016/j.ijheatmasstransfer.2010.11.054 [17] Park S, Oh I H. An analytical model of Nafion? membrane humidifier for proton exchange membrane fuel cells. J Power Sources, 2009, 188(2): 498 doi: 10.1016/j.jpowsour.2008.12.018 [18] Hashemi-Valikboni S Z, Ajarostaghi S S M, Delavar M A, et al. Numerical prediction of humidification process in planar porous membrane humidifier of a PEM fuel cell system to evaluate the effects of operating and geometrical parameters. J Therm Anal Calorim, 2020, 141(5): 1687 doi: 10.1007/s10973-020-10058-6 [19] Chang G F, Xu D, Chang Z H, et al. Modeling and simulation research of membrane humidifier used in fuel cell. J Tongji Univ (Nat Sci) , 2017, 45(2): 256常國峰, 徐迪, 常志宏, 等. 燃料電池膜增濕器建模及仿真. 同濟大學學報(自然科學版), 2017, 45(2):256 [20] Chen W B, Chang G F, Xu S C. CFD analysis of flow distribution in planar membrane humidifier channel. J Jiamusi Univ (Nat Sci Ed) , 2013, 31(5): 660陳武斌, 常國峰, 許思傳. PEMFC用板式膜增濕器流道流量分配CFD分析. 佳木斯大學學報(自然科學版), 2013, 31(5):660 [21] Bao C, Ouyang M G, Yi B L. Analysis of the water and thermal management in proton exchange membrane fuel cell systems. Int J Hydrog Energy, 2006, 31(8): 1040 doi: 10.1016/j.ijhydene.2005.12.011 [22] Afshari E, Baharlou H N. An analytic model of membrane humidifier for proton exchange membrane fuel cell. Energy Equip Syst, 2014, 2(1): 83 [23] Sabharwal M, Duelk C, Bhatia D. Two-dimensional modeling of a cross flow plate and frame membrane humidifier for fuel cell applications. J Membr Sci, 2012, 409-410: 285 doi: 10.1016/j.memsci.2012.03.066 [24] Khazaee I, Sabadbafan H. Effect of humidity content and direction of the flow of reactant gases on water management in the 4-serpentine and 1-serpentine flow channel in a PEM (proton exchange membrane) fuel cell. Energy, 2016, 101: 252 doi: 10.1016/j.energy.2016.02.026 [25] Cahalan T, Rehfeldt S, Bauer M, et al. Experimental set-up for analysis of membranes used in external membrane humidification of PEM fuel cells. Int J Hydrog Energy, 2016, 41(31): 13666 doi: 10.1016/j.ijhydene.2016.05.281 [26] Hwang J J, Chang W R, Kao J K, et al. Experimental study on performance of a planar membrane humidifier for a proton exchange membrane fuel cell stack. J Power Sources, 2012, 215: 69 doi: 10.1016/j.jpowsour.2012.04.051 [27] Chen C Y, Su J H, Ali H M, et al. Effect of channel structure on the performance of a planar membrane humidifier for proton exchange membrane fuel cell. Int J Heat Mass Transf, 2020, 163: 120522 doi: 10.1016/j.ijheatmasstransfer.2020.120522 [28] Bao C, Bessler W G. Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development. J Power Sources, 2015, 275: 922 -