<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

質子交換膜燃料電池用膜增濕器仿真分析

李志遠 李娜 李慶雨 包成 滕越

李志遠, 李娜, 李慶雨, 包成, 滕越. 質子交換膜燃料電池用膜增濕器仿真分析[J]. 工程科學學報, 2022, 44(6): 1090-1097. doi: 10.13374/j.issn2095-9389.2021.04.30.002
引用本文: 李志遠, 李娜, 李慶雨, 包成, 滕越. 質子交換膜燃料電池用膜增濕器仿真分析[J]. 工程科學學報, 2022, 44(6): 1090-1097. doi: 10.13374/j.issn2095-9389.2021.04.30.002
LI Zhi-yuan, LI Na, LI Qing-yu, BAO Cheng, TENG Yue. Performance of a membrane humidifier for a proton exchange membrane fuel cell[J]. Chinese Journal of Engineering, 2022, 44(6): 1090-1097. doi: 10.13374/j.issn2095-9389.2021.04.30.002
Citation: LI Zhi-yuan, LI Na, LI Qing-yu, BAO Cheng, TENG Yue. Performance of a membrane humidifier for a proton exchange membrane fuel cell[J]. Chinese Journal of Engineering, 2022, 44(6): 1090-1097. doi: 10.13374/j.issn2095-9389.2021.04.30.002

質子交換膜燃料電池用膜增濕器仿真分析

doi: 10.13374/j.issn2095-9389.2021.04.30.002
基金項目: 國家電網有限公司總部資助項目(521205200010)
詳細信息
    通訊作者:

    E-mail: baocheng@me.ustb.edu.cn

  • 中圖分類號: TK91

Performance of a membrane humidifier for a proton exchange membrane fuel cell

More Information
  • 摘要: 膜增濕器為質子交換膜燃料電池水熱管理系統的關鍵部件,本研究考慮與燃料電池工作條件的強耦合,系統地進行了膜增濕器運行參數和幾何參數的敏感性仿真分析。基于Matlab/Simulink建立了膜增濕器穩態數學模型,分析了濕側和干側的入口質量流量、溫度和壓力以及膜厚度和面積對膜增濕器傳熱量、水分傳遞量、干側出口相對濕度和水分傳遞率的影響。研究表明:提高入口質量流量會提高傳熱量,并且能有效提高水分傳遞量,但會使水分傳遞率和出口相對濕度降低;干濕兩側溫度的增加可以使膜中水的擴散系數和水傳遞量增加,但過高的溫度會顯著提高水蒸氣飽和壓力,降低水的活度,進而降低膜含水量,不利于水的傳遞;壓力的變化對傳熱的影響很小,但總壓的提高會使濕側入口含濕量下降,水分傳遞量下降,但水分傳遞率升高;較大的膜面積以及較低的膜厚度能夠提高膜水分傳遞量和水分傳遞率,可以有效地提高膜增濕器和燃料電池系統水熱管理性能。

     

  • 圖  1  膜增濕器系統示意圖

    Figure  1.  Diagram of a membrane humidifier system

    圖  2  qmv,memm2,air,in變化趨勢圖

    Figure  2.  Variation trends of q and mv,mem with m2,air,in

    圖  3  φ2,outεm2,air,in變化趨勢圖

    Figure  3.  Variation trends of φ2,out and ε with m2,air,in

    圖  4  qmv,memT2,in變化趨勢圖

    Figure  4.  Variation trends of q and mv,mem with T2,in

    圖  5  φ2,outεT2,in變化趨勢圖

    Figure  5.  Variation trends of φ2,out and ε with T2,in

    圖  6  qmv,memT1,in變化趨勢圖

    Figure  6.  Variation trends of q and mv,mem with T1,in

    圖  7  φ2,outεT1,in變化趨勢圖

    Figure  7.  Variation trends of φ2,out and ε with T1,in

    圖  8  qmv,memP變化趨勢圖

    Figure  8.  Variation trends of q and mv,mem with P

    圖  9  φ2,outεP變化趨勢圖

    Figure  9.  Variation trends of φ2,out and ε with P

    圖  10  qmv,memδm變化趨勢圖

    Figure  10.  Variation trends of q and mv,mem with δm

    圖  11  φ2,outεδm變化趨勢圖

    Figure  11.  Variation trends of φ2,out and ε with δm

    圖  12  qmv,memA變化趨勢圖

    Figure  12.  Variation trends of q and mv,mem with A

    圖  13  φ2,outεA變化趨勢圖

    Figure  13.  Variation trends of φ2,out and ε with A

    表  1  工況參數

    Table  1.   Operating parameters

    ParametersValues
    Inlet temperature of wet channel,T1,in/K 353
    Inlet temperature of dry channel,T2,in/K 293
    Gauge pressure of wet channel,P1,in/MPa 0.2
    Gauge pressure of dry channel,P2,in/MPa 0.2
    Mass ratio of wet channel,w(O2):w(H2O):w(N2) 0.2:0.16:0.64
    Mass ratio of dry channel,w(O2):w(N2) 0.233:0.767
    Inlet mass flow rate of wet channel,m1,in/(kg?s–1) 0.0412
    Inlet mass flow rate of dry channel,m2,in/ (kg?s–1) 0.0382
    Membrane thickness,δm/m 5 × 10?5
    Membrane area,A/m2 0.1
    Heat transfer coefficient,k/ (W? m–2?K–1) 100
    Dry density of membrane,ρm,dry/ (kg?m–3) 2000
    Equivalent mass of membrane,Mm,dry/ (kg?mol–1) 1.1
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhang T, Wang P Q, Chen H C, et al. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Appl Energy, 2018, 223: 249 doi: 10.1016/j.apenergy.2018.04.049
    [2] Chen H C, Zhao X, Zhang T, et al. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: A review. Energy Convers Manag, 2019, 182: 282 doi: 10.1016/j.enconman.2018.12.049
    [3] Feng L L, Chen Y, Li J G, et al. Research progress in carbon-based composite molded bipolar plates. Chin J Eng, 2021, 43(5): 585

    馮利利, 陳越, 李吉剛, 等. 碳基復合材料模壓雙極板研究進展. 工程科學學報, 2021, 43(5):585
    [4] Lin X Y, Xia Y T, Wei S S. Energy management control strategy for plug-in fuel cell electric vehicle based on reinforcement learning algorithm. Chin J Eng, 2019, 41(10): 1332

    林歆悠, 夏玉田, 魏申申. 基于增強學習算法的插電式燃料電池電動汽車能量管理控制策略. 工程科學學報, 2019, 41(10):1332
    [5] Chen D M, Li W, Peng H E. An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control. J Power Sources, 2008, 180(1): 461 doi: 10.1016/j.jpowsour.2008.02.055
    [6] Vasu G, Tangirala A K, Viswanathan B, et al. Continuous bubble humidification and control of relative humidity of H2 for a PEMFC system. Int J Hydrog Energy, 2008, 33(17): 4640 doi: 10.1016/j.ijhydene.2008.05.051
    [7] Natarajan D, Nguyen T. Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell. J Power Sources, 2003, 115(1): 66 doi: 10.1016/S0378-7753(02)00624-9
    [8] Li H, Tang Y H, Wang Z W, et al. A review of water flooding issues in the proton exchange membrane fuel cell. J Power Sources, 2008, 178(1): 103 doi: 10.1016/j.jpowsour.2007.12.068
    [9] Réguillet V, Vaudrey A, Moutin S, et al. Definition of efficiency criteria for a fuel cell humidifier: Application to a low power proton exchange membrane fuel cell system for negative surrounding temperatures. Appl Therm Eng, 2013, 58(1-2): 382 doi: 10.1016/j.applthermaleng.2013.03.055
    [10] Casalegno A, De Antonellis S, Colombo L, et al. Design of an innovative enthalpy wheel based humidification system for polymer electrolyte fuel cell. Int J Hydrog Energy, 2011, 36(8): 5000 doi: 10.1016/j.ijhydene.2011.01.012
    [11] Pourrahmani H, Moghimi M, Siavashi M. Thermal management in PEMFCs: The respective effects of porous media in the gas flow channel. Int J Hydrog Energy, 2019, 44(5): 3121 doi: 10.1016/j.ijhydene.2018.11.222
    [12] Pourrahmani H, Moghimi M, Siavashi M, et al. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs. Appl Therm Eng, 2019, 150: 433 doi: 10.1016/j.applthermaleng.2019.01.010
    [13] Pourrahmani H, Siavashi M, Moghimi M. Design optimization and thermal management of the PEMFC using artificial neural networks. Energy, 2019, 182: 443 doi: 10.1016/j.energy.2019.06.019
    [14] Chang Y F, Qin Y Z, Yin Y, et al. Humidification strategy for polymer electrolyte membrane fuel cells-A review. Appl Energy, 2018, 230: 643 doi: 10.1016/j.apenergy.2018.08.125
    [15] Lao X S, Liu Y, Dai C H, et al. Study on heat and mass transfer performance of cathode membrane humidifier in fuel cell system. IOP Conf Ser:Earth Environ Sci, 2020, 581: 012011 doi: 10.1088/1755-1315/581/1/012011
    [16] Yu S, Im S, Kim S, et al. A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization. Int J Heat Mass Transf, 2011, 54(7-8): 1344 doi: 10.1016/j.ijheatmasstransfer.2010.11.054
    [17] Park S, Oh I H. An analytical model of Nafion? membrane humidifier for proton exchange membrane fuel cells. J Power Sources, 2009, 188(2): 498 doi: 10.1016/j.jpowsour.2008.12.018
    [18] Hashemi-Valikboni S Z, Ajarostaghi S S M, Delavar M A, et al. Numerical prediction of humidification process in planar porous membrane humidifier of a PEM fuel cell system to evaluate the effects of operating and geometrical parameters. J Therm Anal Calorim, 2020, 141(5): 1687 doi: 10.1007/s10973-020-10058-6
    [19] Chang G F, Xu D, Chang Z H, et al. Modeling and simulation research of membrane humidifier used in fuel cell. J Tongji Univ (Nat Sci), 2017, 45(2): 256

    常國峰, 徐迪, 常志宏, 等. 燃料電池膜增濕器建模及仿真. 同濟大學學報(自然科學版), 2017, 45(2):256
    [20] Chen W B, Chang G F, Xu S C. CFD analysis of flow distribution in planar membrane humidifier channel. J Jiamusi Univ (Nat Sci Ed), 2013, 31(5): 660

    陳武斌, 常國峰, 許思傳. PEMFC用板式膜增濕器流道流量分配CFD分析. 佳木斯大學學報(自然科學版), 2013, 31(5):660
    [21] Bao C, Ouyang M G, Yi B L. Analysis of the water and thermal management in proton exchange membrane fuel cell systems. Int J Hydrog Energy, 2006, 31(8): 1040 doi: 10.1016/j.ijhydene.2005.12.011
    [22] Afshari E, Baharlou H N. An analytic model of membrane humidifier for proton exchange membrane fuel cell. Energy Equip Syst, 2014, 2(1): 83
    [23] Sabharwal M, Duelk C, Bhatia D. Two-dimensional modeling of a cross flow plate and frame membrane humidifier for fuel cell applications. J Membr Sci, 2012, 409-410: 285 doi: 10.1016/j.memsci.2012.03.066
    [24] Khazaee I, Sabadbafan H. Effect of humidity content and direction of the flow of reactant gases on water management in the 4-serpentine and 1-serpentine flow channel in a PEM (proton exchange membrane) fuel cell. Energy, 2016, 101: 252 doi: 10.1016/j.energy.2016.02.026
    [25] Cahalan T, Rehfeldt S, Bauer M, et al. Experimental set-up for analysis of membranes used in external membrane humidification of PEM fuel cells. Int J Hydrog Energy, 2016, 41(31): 13666 doi: 10.1016/j.ijhydene.2016.05.281
    [26] Hwang J J, Chang W R, Kao J K, et al. Experimental study on performance of a planar membrane humidifier for a proton exchange membrane fuel cell stack. J Power Sources, 2012, 215: 69 doi: 10.1016/j.jpowsour.2012.04.051
    [27] Chen C Y, Su J H, Ali H M, et al. Effect of channel structure on the performance of a planar membrane humidifier for proton exchange membrane fuel cell. Int J Heat Mass Transf, 2020, 163: 120522 doi: 10.1016/j.ijheatmasstransfer.2020.120522
    [28] Bao C, Bessler W G. Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development. J Power Sources, 2015, 275: 922
  • 加載中
圖(13) / 表(1)
計量
  • 文章訪問數:  1091
  • HTML全文瀏覽量:  436
  • PDF下載量:  81
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-04-30
  • 網絡出版日期:  2021-08-18
  • 刊出日期:  2022-06-25

目錄

    /

    返回文章
    返回