Three-dimensional slope stability based on the finite element limit equilibrium method
-
摘要: 提出了一種基于有限元彈塑性應力場和極限平衡狀態的三維邊坡穩定分析方法——三維有限元極限平衡法。首先,考慮三維空間中滑動方向,提出滑動面上一點在滑動方向上的極限平衡條件,并證明滑動面上土體整體達到極限平衡狀態與滑動面上土體各處在滑動方向上處于極限平衡狀態等價。再通過剛體極限平衡假定計算主滑方向和滑動面上各點滑動方向。最后,定義局部安全系數為抗剪強度與滑動方向上剪應力投影的比值,基于三維邊坡整體極限平衡條件將局部安全系數通過積分中值定理轉變為整體安全系數。該方法計算簡單,消除了剪應力比形式定義安全系數滑動面形狀限制,具備合理性與有效性。算例驗證結果表明,該方法滑動方向假設合理,安全系數與嚴格三維極限平衡法結果一致。Abstract: A finite element limit equilibrium method was proposed based on finite element stress analysis combined with a limit equilibrium condition to analyze the slope stability. The local safety factor defined in the form of shear strength and shear stress ratio in a three-dimensional (3D) space does not consider the sliding direction influence on the calculation results. In this paper, a 3D finite element limit equilibrium method that considers the sliding direction was proposed. This method was different from the limit equilibrium and strength reduction methods and analyzed slope stability through the “true” stress state without reducing the material strength parameters. First, considering the sliding direction in the 3D space, the limit equilibrium condition of a point was proposed on the slip surface in the sliding direction. An equivalent relationship was proved of the slip surface was in the limit equilibrium state, and each point of the slip surface was in the limit equilibrium state in the sliding direction. Then, the main sliding direction and the sliding direction of each point on the slip surface were calculated assuming the rigid body limit equilibrium. Finally, the local safety factor was defined as the ratio of the shear strength to the shear stress projection in the sliding direction. Based on the equivalent relationship of the limit equilibrium state of the 3D slope, the local safety factor was transformed into a global safety factor by applying the integral median theorem. The method is simple to calculate, eliminates the limitation of the slip surface shape of the safety factor defined by the shear stress ratio form, and is reasonable and effective. The verification result of the calculation example shows that the sliding direction assumption of the method is reasonable, and the safety factor is consistent with the result of the strict 3D limit equilibrium method.
-
表 1 算例1的安全系數比較
Table 1. Comparison of the safety factors computed for example 1
表 2 算例2的材料參數
Table 2. Mechanical parameters used in example 2
Parameters Symmetric wedge Asymmetric wedge Rock Structural surfaces Rock Structural surfaces Weight, γ/
(kN·m?3)26 20 26 20 Poisson ratio, ν 0.49 0.49 0.49 0.49 Friction angle,
φ/ (°)45 20 45 30 Cohesion,
c/kPa1000 20 1000 50 表 3 算例2的幾何信息
Table 3. Geometric information used in example 2
(°) Surface Symmetric wedge Asymmetric wedge Dip direction Dip Dip direction Dip Left structural surface 115 45 120 40 Right structural surface 245 45 240 60 Upper surface 180 10 180 0 Slope surface 180 60 180 60 表 4 算例2的安全系數比較
Table 4. Comparison of the safety factors for example 2
www.77susu.com -
參考文獻
[1] Cui B, Wang G J, Liu W L, et al. Seepage and stability analysis of pore air pressure on a high-bench dump under heavy rainfall. Chin J Eng, 2021, 43(3): 365崔博, 王光進, 劉文連, 等. 強降雨條件下孔隙氣壓作用的高臺階排土場滲流與穩定性. 工程科學學報, 2021, 43(3):365 [2] Zhu D Y, Qian Q H. Rigorous and quasi-rigorous limit equilibrium solutions of 3d slope stability and application to engineering. Chin J Rock Mech Eng, 2007, 26(8): 1513 doi: 10.3321/j.issn:1000-6915.2007.08.001朱大勇, 錢七虎. 三維邊坡嚴格與準嚴格極限平衡解答及工程應用. 巖石力學與工程學報, 2007, 26(8):1513 doi: 10.3321/j.issn:1000-6915.2007.08.001 [3] Hong Z. Eigenvalue problem from the stability analysis of slopes. J Geotech Geoenviron Eng, 2009, 135(5): 647 doi: 10.1061/(ASCE)GT.1943-5606.0000071 [4] Zhou X P, Cheng H. Analysis of stability of three-dimensional slopes using the rigorous limit equilibrium method. Eng Geol, 2013, 160: 21 doi: 10.1016/j.enggeo.2013.03.027 [5] Wan Y K, Gao Y F, Zhang F. A simplified approach to determine the unique direction of sliding in 3D slopes. Eng Geol, 2016, 211: 179 doi: 10.1016/j.enggeo.2016.07.001 [6] Jiang Q H, Zhou C B. A rigorous method for three-dimensional asymmetrical slope stability analysis. Can Geotech J, 2018, 55(4): 495 doi: 10.1139/cgj-2017-0317 [7] Ma J X, Lai Z S, Cai Q E, et al. 3D fem analysis of slope stability based on strength reduction method. Chin J Rock Mech Eng, 2004, 23(16): 2690 doi: 10.3321/j.issn:1000-6915.2004.16.006馬建勛, 賴志生, 蔡慶娥, 等. 基于強度折減法的邊坡穩定性三維有限元分析. 巖石力學與工程學報, 2004, 23(16):2690 doi: 10.3321/j.issn:1000-6915.2004.16.006 [8] Nian T K, Huang R Q, Wan S S, et al. Three-dimensional strength-reduction finite element analysis of slopes: Geometric effects. Can Geotech J, 2012, 49(5): 574 doi: 10.1139/t2012-014 [9] Hu S S, Tong S J, Liu B Q, et al. Stability analysis of three-dimensional bridge abutment slope based on strength reduction method for inhomogeneous slope. Rock Soil Mech, 2014, 35(Suppl 2): 653胡松山, 童申家, 劉斌清, 等. 基于非均質邊坡強度折減法的三維橋基邊坡穩定性分析. 巖土力學, 2014, 35(增刊2): 653 [10] Yao W M, Hu B, Yu H B, et al. Numerical analysis of the failure modes and stability of 3D slopes with interbreeding of soft and hard rocks. Chin J Eng, 2017, 39(2): 182姚文敏, 胡斌, 余海兵, 等. 三維軟硬互層邊坡的破壞模式與穩定性研究. 工程科學學報, 2017, 39(2):182 [11] Ge X R. A new method for anti-sliding stability analysis-basic principle of vector sum analysis method and its application // The 11th China National Congress of Rock Mechanics and Engineering. Wuhan, 2010: 19葛修潤. 抗滑穩定分析新方法——矢量和分析法的基本原理及其應用//第十一次全國巖石力學與工程學術大會, 武漢, 2010: 19 [12] Zhang H T, Luo X Q, Shen H, et al. Vector-sum-based slip surface stress method for analysing slip mass stability. Rock Soil Mech, 2018, 39(5): 1691 doi: 10.16285/j.rsm.2016.1218張海濤, 羅先啟, 沈輝, 等. 基于矢量和的滑面應力抗滑穩定分析方法. 巖土力學, 2018, 39(5):1691 doi: 10.16285/j.rsm.2016.1218 [13] Liu G Y, Zhuang X Y, Cui Z Q. Three-dimensional slope stability analysis using independent cover based numerical manifold and vector method. Eng Geol, 2017, 225: 83 doi: 10.1016/j.enggeo.2017.02.022 [14] Stianson J R, Fredlund D G, Chan D. Three-dimensional slope stability based on stresses from a stress-deformation analysis. Can Geotech J, 2011, 48(6): 891 doi: 10.1139/t11-006 [15] Guo M W, Li C G, Wang S L. Three-dimensional slope stability analysis based on finite element stress. Chin J Rock Mech Eng, 2012, 31(12): 2494 doi: 10.3969/j.issn.1000-6915.2012.12.013郭明偉, 李春光, 王水林. 基于有限元應力的三維邊坡穩定性分析. 巖石力學與工程學報, 2012, 31(12):2494 doi: 10.3969/j.issn.1000-6915.2012.12.013 [16] Lin Y S, Chen S H. Search of three-dimensional slip surface for slope based on finite element calculation. Rock Soil Mech, 2013, 34(4): 1191 doi: 10.16285/j.rsm.2013.04.011林永生, 陳勝宏. 基于有限元計算的邊坡三維滑裂面搜索. 巖土力學, 2013, 34(4):1191 doi: 10.16285/j.rsm.2013.04.011 [17] Yang Y C, Xing H G, Yang X G, et al. Determining the critical slip surface of three-dimensional soil slopes from the stress fields solved using the finite element method. Math Probl Eng, 2016, 2016: 1 [18] Shao L T, Li H J. Stability Analysis of Geotechnical Structure: Finite Element Limit Equilibrium Method and Application. Beijing: Science Press, 2011邵龍潭, 李紅軍. 土工結構穩定分析: 有限元極限平衡法及其應用. 北京: 科學出版社, 2011 [19] Shao L T, Liu S Y. Extension of limit equilibrium conditions and stability analysis of geotechnical structures. Rock Soil Mech, 2015, 36(Suppl 1): 71邵龍潭, 劉士乙. 極限平衡條件的拓展與土工結構穩定分析. 巖土力學, 2015, 36(增刊1): 71 [20] Liu X Y, Zhao Y, Liu Y, et al. Determination method of limit equilibrium state and critical slip surface of soil slope. Chin J Rock Mech Eng, 2012, 31(7): 1369 doi: 10.3969/j.issn.1000-6915.2012.07.009劉曉宇, 趙穎, 劉洋, 等. 土質邊坡極限平衡狀態及臨界滑動面的判定方法. 巖石力學與工程學報, 2012, 31(7):1369 doi: 10.3969/j.issn.1000-6915.2012.07.009 [21] Chen W F. Limit Analysis and Soil Plasticity. Amsterdam: Elsevier, 2013 [22] Kalatehjari R, A Rashid A S, Hajihassani M, et al. Determining the unique direction of sliding in three-dimensional slope stability analysis. Eng Geol, 2014, 182: 97 doi: 10.1016/j.enggeo.2014.06.002 [23] Hungr O, Salgado F M, Byrne P M. Evaluation of a three-dimensional method of slope stability analysis. Can Geotech J, 1989, 26(4): 679 doi: 10.1139/t89-079 [24] Deng D P, Li L. Three-dimensional limit equilibrium method for slope stability based on assumption of stress on slip surface. Rock Soil Mech, 2017, 38(1): 189 doi: 10.16285/j.rsm.2017.01.024鄧東平, 李亮. 基于滑動面應力假設下的三維邊坡穩定性極限平衡法研究. 巖土力學, 2017, 38(1):189 doi: 10.16285/j.rsm.2017.01.024 [25] Fredlund D G, Krahn J. Comparison of slope stability methods of analysis. Can Geotech J, 1977, 14(3): 429 doi: 10.1139/t77-045 [26] Hoek E, Bray J D. Rock Slope Engineering. Boca Raton: CRC Press, 1981 -