<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種新型液電式互聯饋能懸架的特性分析

秦博男 楊玨 羅維東 張文明

秦博男, 楊玨, 羅維東, 張文明. 一種新型液電式互聯饋能懸架的特性分析[J]. 工程科學學報, 2022, 44(12): 2154-2163. doi: 10.13374/j.issn2095-9389.2021.04.25.002
引用本文: 秦博男, 楊玨, 羅維東, 張文明. 一種新型液電式互聯饋能懸架的特性分析[J]. 工程科學學報, 2022, 44(12): 2154-2163. doi: 10.13374/j.issn2095-9389.2021.04.25.002
QIN Bo-nan, YANG Jue, LUO Wei-dong, ZHANG Wen-ming. Characteristic analysis of a novel energy-harvesting hydraulically-interconnected suspension[J]. Chinese Journal of Engineering, 2022, 44(12): 2154-2163. doi: 10.13374/j.issn2095-9389.2021.04.25.002
Citation: QIN Bo-nan, YANG Jue, LUO Wei-dong, ZHANG Wen-ming. Characteristic analysis of a novel energy-harvesting hydraulically-interconnected suspension[J]. Chinese Journal of Engineering, 2022, 44(12): 2154-2163. doi: 10.13374/j.issn2095-9389.2021.04.25.002

一種新型液電式互聯饋能懸架的特性分析

doi: 10.13374/j.issn2095-9389.2021.04.25.002
基金項目: 校企合作項目“公鐵兩用智能駕駛多功能移動平臺底盤設計開發”資助項目(2017-529)
詳細信息
    通訊作者:

    E-mail: yangjue@ustb.edu.cn

  • 中圖分類號: U463.1

Characteristic analysis of a novel energy-harvesting hydraulically-interconnected suspension

More Information
  • 摘要: 提出了一種可回收車輛振動能量的新型液電式互聯饋能懸架系統(Energy-harvesting hydraulically interconnected suspension, EH-HIS),并對其垂向、側傾、俯仰工作模式進行了原理分析。基于系統流量關系和壓降原理建立了液電式互聯饋能懸架的數學模型,并通過臺架試驗對仿真模型進行了驗證。通過諧波激勵下的仿真測試,對系統的阻尼特性與饋能特性進行了分析,驗證了液電式互聯饋能懸架的阻尼特性具備非對稱性和可調節性,可以滿足大部分乘用車輛的許用范圍。當負載電阻從5 $ \mathrm{\Omega } $增加到25 $ \mathrm{\Omega } $時,相應的等效阻尼系數從7558 N?s?m?1降低至3134 N?s?m?1。饋能特性分析顯示當負載電阻等于電機內阻時,系統饋能功率將達到最高值,在頻率2 Hz振幅30 mm的激勵下,系統平均饋能功率可以達到875.9 W。

     

  • 圖  1  液電式互聯饋能懸架運動模式. (a) 垂向模式; (b) 側傾模式; (c) 俯仰模式

    Figure  1.  Working modes of EH?HIS: (a) bounce motion; (b) roll motion; (c) pitch motion

    圖  2  液電式互聯饋能懸架系統. (a) 單缸子模塊; (b) 系統流量關系

    Figure  2.  EH-HIS system: (a) sub-module of the EH-HIS; (b) system volumetric flow

    圖  3  單缸子模塊樣機及試驗臺架布置

    Figure  3.  Sub-module prototype and bench test setup

    圖  4  不同負載電阻下的阻尼特性測試與仿真結果. (a) 10 $ \mathrm{\Omega } $;(b) 20 $ \mathrm{\Omega } $

    Figure  4.  Test and simulation results of damping characteristics under different external resistances: (a) 10 $ \mathrm{\Omega } $; (b) 20 $ \mathrm{\Omega } $

    圖  5  不同負載電阻下的阻尼特性. (a) 示功特性; (b) 速度特性

    Figure  5.  Damping characteristic under different external resistances: (a) force-displacement curves; (b) force-velocity curves

    圖  6  不同負載電阻下的等效阻尼系數

    Figure  6.  Equivalent damping coefficient under different external resistances

    圖  7  液電式互聯饋能懸架與原廠阻尼器的速度特性對比

    Figure  7.  Velocity characteristic comparison between the EH-HIS and original damper

    圖  8  不同激勵下的能量輸入與回收. (a) 0.5 Hz 30 mm; (b) 1 Hz 30 mm; (c) 2 Hz 30 mm

    Figure  8.  Harvested energy and input energy under different excitations: (a) 0.5 Hz 30 mm; (b) 1 Hz 30 mm; (c) 2 Hz 30 mm

    圖  9  不同負載電阻與激勵頻率下的平均饋能功率

    Figure  9.  Average power under different external resistances and frequencies

    表  1  液電式互聯饋能懸架系統相關參數

    Table  1.   Parameters of the EH-HIS system

    ParameterValueUnitNomenclature
    $ {D}_{\mathrm{p}} $50.8mmPiston diameter
    $ {D}_{\mathrm{r}} $19.05mmPiston rod diameter
    $ {P}_{0} $5×105PaGas pressure of accumulators at Initial State
    $ {P}_{\mathrm{s}} $6×105PaGas pressure of accumulators at Static State
    $ {V}_{0} $0.16LGas volume of accumulators at Initial State
    $ {V}_{\mathrm{s}} $0.13LGas volume of accumulators at Static State
    $ \rho $802kg?m?3Oil density
    $ l $1mLength of the pipeline
    $ d $6.35mmInner diameter of the pipeline
    $ {C}_{\mathrm{v}} $3.7×103Pa?min?L?1Damping coefficient of check valves
    $ q $32cm3?rev?1Displacement of the hydraulic motor
    $ {\eta }_{\mathrm{v}} $0.92Volumetric efficiency of the hydraulic motor
    $ {\eta }_{\mathrm{m}} $0.95Mechanical efficiency of the hydraulic motor
    $ {n}_{\mathrm{g}} $3.5Gear ratio of the gearbox
    $ {J}_{\mathrm{g}} $6×10?5kg?m2Rotational inertia of the energy harvesting unit
    $ {R}_{\mathrm{i}\mathrm{n}} $3.9$ \mathrm{\Omega } $Generator internal resistance
    $ {R}_{\mathrm{e}\mathrm{x}} $Adjustable$ \mathrm{\Omega } $External resistance
    $ {k}_{\mathrm{e}} $0.242V?s?rad?1Generator EMF constant
    $ {k}_{\mathrm{t}} $0.242N?m?A?1Generator torque constant
    下載: 導出CSV

    表  2  液電式互聯饋能懸架能量回收特性

    Table  2.   Energy harvesting characteristics

    ExcitationAvg. power/WEfficiency/%
    Frequency/Hzamplitude/mm
    0.53054.732.9
    130219.026.4
    230875.919.0
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Tu J M. Simulation and Analysis of the Application Effect of Mechanical Elimination Torsion Suspension [Dissertation]. Changchun: Jilin University, 2007

    涂俊敏. 機械式消扭懸架系統應用效果的仿真分析[學位論文]. 長春: 吉林大學, 2007
    [2] Li Z X, Cui Z, Xu X, et al. Experimental study on the dynamic performance of pneumatically interlinked air suspension. Sci Technol Eng, 2014, 14(14): 82 doi: 10.3969/j.issn.1671-1815.2014.14.016

    李仲興, 崔振, 徐興, 等. 互聯式空氣懸架動態特性試驗研究. 科學技術與工程, 2014, 14(14):82 doi: 10.3969/j.issn.1671-1815.2014.14.016
    [3] Zhang Y, Zhou K K, Qian K. Influence of interconnected air suspension on vehicle vibration performance. J Jiangsu Univ Nat Sci Ed, 2017, 38(4): 410

    張云, 周孔亢, 錢寬. 互聯空氣懸架對整車振動性能的影響. 江蘇大學學報(自然科學版), 2017, 38(4):410
    [4] Dou G W, Yu W H, Li Z X, et al. Sliding mode control of laterally interconnected air suspensions. Appl Sci, 2020, 10(12): 4320 doi: 10.3390/app10124320
    [5] Chen Y, Hou Y B, Peterson A, et al. Failure mode and effects analysis of dual levelling valve airspring suspensions on truck dynamics. Veh Syst Dyn, 2019, 57(4): 617 doi: 10.1080/00423114.2018.1480787
    [6] Chen Y, Peterson A W, Ahmadian M. Achieving anti-roll bar effect through air management in commercial vehicle pneumatic suspensions. Veh Syst Dyn, 2019, 57(12): 1775 doi: 10.1080/00423114.2018.1552005
    [7] Smith W A, Zhang N, Hu W. Hydraulically interconnected vehicle suspension: Handling performance. Veh Syst Dyn, 2011, 49(1-2): 87 doi: 10.1080/00423111003596743
    [8] Smith W A, Zhang N. Recent developments in passive interconnected vehicle suspension. Front Mech Eng China, 2010, 5(1): 1 doi: 10.1007/s11465-009-0092-z
    [9] Yao Q L, Zhang X J, Guo K H, et al. Study on a novel dual-mode interconnected suspension. Int J Veh Des, 2015, 68(1-3): 81
    [10] Ding F, Zhang N, Han X. Modeling and modal analysis of multi-body truck system fitted with hydraulically interconnected suspension. J Mech Eng, 2012, 48(6): 116 doi: 10.3901/JME.2012.06.116

    丁飛, 張農, 韓旭. 安裝液壓互聯懸架貨車的機械液壓多體系統建模及模態分析. 機械工程學報, 2012, 48(6):116 doi: 10.3901/JME.2012.06.116
    [11] Zhou M, Zhang J, Zheng M Y, et al. Simulation and experimental study on the off-road performance of vehicle with hydraulically interconnected suspension. Automot Eng, 2017, 39(4): 447 doi: 10.19562/j.chinasae.qcgc.2017.04.013

    周敏, 章杰, 鄭敏毅, 等. 裝有液壓互聯懸架車輛的越野性能仿真與試驗研究. 汽車工程, 2017, 39(4):447 doi: 10.19562/j.chinasae.qcgc.2017.04.013
    [12] Zhang Y X, Guo K H, Wang D, et al. Energy conversion mechanism and regenerative potential of vehicle suspensions. Energy, 2017, 119: 961 doi: 10.1016/j.energy.2016.11.045
    [13] Abdelkareem M A A, Xu L, Ali M K A, et al. Vibration energy harvesting in automotive suspension system: A detailed review. Appl Energy, 2018, 229: 672 doi: 10.1016/j.apenergy.2018.08.030
    [14] Li Z J, Zuo L, Luhrs G, et al. Electromagnetic energy-harvesting shock absorbers: Design, modeling, and road tests. IEEE Trans Veh Technol, 2013, 62(3): 1065 doi: 10.1109/TVT.2012.2229308
    [15] Li Z J, Zuo L, Kuang J, et al. Energy-harvesting shock absorber with a mechanical motion rectifier. Smart Mater Struct, 2013, 22(2): 025008 doi: 10.1088/0964-1726/22/2/025008
    [16] Liu Y L, Xu L, Zuo L. Design, modeling, lab, and field tests of a mechanical-motion-rectifier-based energy harvester using a ball-screw mechanism. IEEE/ASME Trans Mechatron, 2017, 22(5): 1933 doi: 10.1109/TMECH.2017.2700485
    [17] Xiong Q C, Qin B N, Li X F, et al. A rule-based damping control of MMR-based energy-harvesting vehicle suspension // 2020 American Control Conference (ACC). Denver, 2020: 2262
    [18] Zhang Y X, Zhang X J, Zhan M, et al. Study on a novel hydraulic pumping regenerative suspension for vehicles. J Frankl Inst, 2015, 352(2): 485 doi: 10.1016/j.jfranklin.2014.06.005
    [19] Zhang Y X, Chen H, Guo K H, et al. Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation. Appl Energy, 2017, 199: 1 doi: 10.1016/j.apenergy.2017.04.085
    [20] Guo S J, Xu L, Liu Y L, et al. Modeling and experiments of a hydraulic electromagnetic energy-harvesting shock absorber. IEEE/ASME Trans Mechatron, 2017, 22(6): 2684 doi: 10.1109/TMECH.2017.2760341
    [21] Fang Z G, Guo X X, Zuo L, et al. Theory and experiment of damping characteristics of hydraulic electromagnetic energy-regenerative shock absorber. J Jilin Univ Eng Technol Ed, 2014, 44(4): 939 doi: 10.13229/j.cnki.jdxbgxb201404007

    方志剛, 過學迅, 左磊, 等. 液電饋能式減振器阻尼特性理論及試驗. 吉林大學學報(工學版), 2014, 44(4):939 doi: 10.13229/j.cnki.jdxbgxb201404007
    [22] Chen L, Zhang C L, Wang R C, et al. Modeling and optimization design of hydraulically interconnected energy-regenerative suspension. Trans Chin Soc Agric Mach, 2017, 48(1): 303 doi: 10.6041/j.issn.1000-1298.2017.01.040

    陳龍, 張承龍, 汪若塵, 等. 液壓互聯式饋能懸架建模與優化設計. 農業機械學報, 2017, 48(1):303 doi: 10.6041/j.issn.1000-1298.2017.01.040
    [23] Wang R C, Jiang Q M, Ye Q, et al. Characteristics analysis and experiment of hydraulic interconnected energy-regenerative suspension. Trans Chin Soc Agric Mach, 2017, 48(8): 350 doi: 10.6041/j.issn.1000-1298.2017.08.042

    汪若塵, 蔣秋明, 葉青, 等. 液壓互聯饋能懸架特性分析與試驗. 農業機械學報, 2017, 48(8):350 doi: 10.6041/j.issn.1000-1298.2017.08.042
    [24] Zou J Y, Guo X X, Abdelkareem M A A, et al. Modelling and ride analysis of a hydraulic interconnected suspension based on the hydraulic energy regenerative shock absorbers. Mech Syst Signal Process, 2019, 127: 345 doi: 10.1016/j.ymssp.2019.02.047
    [25] Chen Y Z, Qin B N, Guo S J, et al. Asymmetric energy harvesting and hydraulically interconnected suspension: Modeling and validations // Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Anaheim, 2019: 98402
    [26] Dixon J C. The Shock Absorber Handbook. 2nd Ed. Chichester: John Wiley & Sons, 2008
    [27] Ministry of National Machinery Industry. QC/T545—1999 Telescopic Shock Absorber Bench Test Method. Beijing: China Planning Press, 1999

    國家機械工業局. QC/T545—1999汽車筒式減振器臺架試驗方法. 北京: 中國計劃出版社, 1999
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  740
  • HTML全文瀏覽量:  244
  • PDF下載量:  60
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-04-25
  • 網絡出版日期:  2021-05-28
  • 刊出日期:  2022-12-01

目錄

    /

    返回文章
    返回