Characteristic analysis of a novel energy-harvesting hydraulically-interconnected suspension
-
摘要: 提出了一種可回收車輛振動能量的新型液電式互聯饋能懸架系統(Energy-harvesting hydraulically interconnected suspension, EH-HIS),并對其垂向、側傾、俯仰工作模式進行了原理分析。基于系統流量關系和壓降原理建立了液電式互聯饋能懸架的數學模型,并通過臺架試驗對仿真模型進行了驗證。通過諧波激勵下的仿真測試,對系統的阻尼特性與饋能特性進行了分析,驗證了液電式互聯饋能懸架的阻尼特性具備非對稱性和可調節性,可以滿足大部分乘用車輛的許用范圍。當負載電阻從5
$ \mathrm{\Omega } $ 增加到25$ \mathrm{\Omega } $ 時,相應的等效阻尼系數從7558 N?s?m?1降低至3134 N?s?m?1。饋能特性分析顯示當負載電阻等于電機內阻時,系統饋能功率將達到最高值,在頻率2 Hz振幅30 mm的激勵下,系統平均饋能功率可以達到875.9 W。Abstract: The vehicle suspension system is not only used to consume the vibration energy transmitted from the ground to the vehicle body but also provides good handling stability for the vehicle. This can be a challenging tradeoff, especially for vehicles with a high center of gravity and heavy loads, such as trucks and SUVs. These vehicles are prone to large load deviations during emergency steering, causing the vehicle to roll over. The emergence of a hydraulically-interconnected suspension (HIS) could effectively maintain the vehicle body’s stability. As a unique hydropneumatic suspension, the HIS system has prominent nonlinear damping characteristics and can decouple the bounce motion and roll motion of the vehicle. This increases the vehicle’s roll stiffness without affecting the vertical rigidity of the vehicle, thereby substantially reducing the possibility of rollover accidents. This paper introduces a novel energy-harvesting hydraulically-interconnected suspension (EH-HIS), which has the dynamic characteristics of the HIS and can even harvest the vibration energy that is traditionally dissipated into heat using the oil shock absorbers. Working principles of bounce motion, roll motion, and pitch motion of the EH-HIS system have been analyzed. A mathematical model of the system was established based on the pressure drop principle and validated by a bench test. Damping characteristics and the energy harvesting capability are studied via simulations. Results show that the EH-HIS has considerable asymmetric and tunable damping characteristics that can meet the allowable range of most passenger vehicles. When the external resistance increases from 5 to 25$ \mathrm{\Omega } $ , the corresponding equivalent damping coefficient decreases from 7558 to 3134 N?s·m?1. The energy harvesting capability analysis shows that maximum energy harvesting power is achieved when the external resistance is equal to the internal resistance. Furthermore, the average harvesting power can reach 875.9 W under the excitation of 2 Hz (frequency) 30 mm (amplitude). -
表 1 液電式互聯饋能懸架系統相關參數
Table 1. Parameters of the EH-HIS system
Parameter Value Unit Nomenclature $ {D}_{\mathrm{p}} $ 50.8 mm Piston diameter $ {D}_{\mathrm{r}} $ 19.05 mm Piston rod diameter $ {P}_{0} $ 5×105 Pa Gas pressure of accumulators at Initial State $ {P}_{\mathrm{s}} $ 6×105 Pa Gas pressure of accumulators at Static State $ {V}_{0} $ 0.16 L Gas volume of accumulators at Initial State $ {V}_{\mathrm{s}} $ 0.13 L Gas volume of accumulators at Static State $ \rho $ 802 kg?m?3 Oil density $ l $ 1 m Length of the pipeline $ d $ 6.35 mm Inner diameter of the pipeline $ {C}_{\mathrm{v}} $ 3.7×103 Pa?min?L?1 Damping coefficient of check valves $ q $ 32 cm3?rev?1 Displacement of the hydraulic motor $ {\eta }_{\mathrm{v}} $ 0.92 Volumetric efficiency of the hydraulic motor $ {\eta }_{\mathrm{m}} $ 0.95 Mechanical efficiency of the hydraulic motor $ {n}_{\mathrm{g}} $ 3.5 Gear ratio of the gearbox $ {J}_{\mathrm{g}} $ 6×10?5 kg?m2 Rotational inertia of the energy harvesting unit $ {R}_{\mathrm{i}\mathrm{n}} $ 3.9 $ \mathrm{\Omega } $ Generator internal resistance $ {R}_{\mathrm{e}\mathrm{x}} $ Adjustable $ \mathrm{\Omega } $ External resistance $ {k}_{\mathrm{e}} $ 0.242 V?s?rad?1 Generator EMF constant $ {k}_{\mathrm{t}} $ 0.242 N?m?A?1 Generator torque constant 表 2 液電式互聯饋能懸架能量回收特性
Table 2. Energy harvesting characteristics
Excitation Avg. power/W Efficiency/% Frequency/Hz amplitude/mm 0.5 30 54.7 32.9 1 30 219.0 26.4 2 30 875.9 19.0 www.77susu.com -
參考文獻
[1] Tu J M. Simulation and Analysis of the Application Effect of Mechanical Elimination Torsion Suspension [Dissertation]. Changchun: Jilin University, 2007涂俊敏. 機械式消扭懸架系統應用效果的仿真分析[學位論文]. 長春: 吉林大學, 2007 [2] Li Z X, Cui Z, Xu X, et al. Experimental study on the dynamic performance of pneumatically interlinked air suspension. Sci Technol Eng, 2014, 14(14): 82 doi: 10.3969/j.issn.1671-1815.2014.14.016李仲興, 崔振, 徐興, 等. 互聯式空氣懸架動態特性試驗研究. 科學技術與工程, 2014, 14(14):82 doi: 10.3969/j.issn.1671-1815.2014.14.016 [3] Zhang Y, Zhou K K, Qian K. Influence of interconnected air suspension on vehicle vibration performance. J Jiangsu Univ Nat Sci Ed, 2017, 38(4): 410張云, 周孔亢, 錢寬. 互聯空氣懸架對整車振動性能的影響. 江蘇大學學報(自然科學版), 2017, 38(4):410 [4] Dou G W, Yu W H, Li Z X, et al. Sliding mode control of laterally interconnected air suspensions. Appl Sci, 2020, 10(12): 4320 doi: 10.3390/app10124320 [5] Chen Y, Hou Y B, Peterson A, et al. Failure mode and effects analysis of dual levelling valve airspring suspensions on truck dynamics. Veh Syst Dyn, 2019, 57(4): 617 doi: 10.1080/00423114.2018.1480787 [6] Chen Y, Peterson A W, Ahmadian M. Achieving anti-roll bar effect through air management in commercial vehicle pneumatic suspensions. Veh Syst Dyn, 2019, 57(12): 1775 doi: 10.1080/00423114.2018.1552005 [7] Smith W A, Zhang N, Hu W. Hydraulically interconnected vehicle suspension: Handling performance. Veh Syst Dyn, 2011, 49(1-2): 87 doi: 10.1080/00423111003596743 [8] Smith W A, Zhang N. Recent developments in passive interconnected vehicle suspension. Front Mech Eng China, 2010, 5(1): 1 doi: 10.1007/s11465-009-0092-z [9] Yao Q L, Zhang X J, Guo K H, et al. Study on a novel dual-mode interconnected suspension. Int J Veh Des, 2015, 68(1-3): 81 [10] Ding F, Zhang N, Han X. Modeling and modal analysis of multi-body truck system fitted with hydraulically interconnected suspension. J Mech Eng, 2012, 48(6): 116 doi: 10.3901/JME.2012.06.116丁飛, 張農, 韓旭. 安裝液壓互聯懸架貨車的機械液壓多體系統建模及模態分析. 機械工程學報, 2012, 48(6):116 doi: 10.3901/JME.2012.06.116 [11] Zhou M, Zhang J, Zheng M Y, et al. Simulation and experimental study on the off-road performance of vehicle with hydraulically interconnected suspension. Automot Eng, 2017, 39(4): 447 doi: 10.19562/j.chinasae.qcgc.2017.04.013周敏, 章杰, 鄭敏毅, 等. 裝有液壓互聯懸架車輛的越野性能仿真與試驗研究. 汽車工程, 2017, 39(4):447 doi: 10.19562/j.chinasae.qcgc.2017.04.013 [12] Zhang Y X, Guo K H, Wang D, et al. Energy conversion mechanism and regenerative potential of vehicle suspensions. Energy, 2017, 119: 961 doi: 10.1016/j.energy.2016.11.045 [13] Abdelkareem M A A, Xu L, Ali M K A, et al. Vibration energy harvesting in automotive suspension system: A detailed review. Appl Energy, 2018, 229: 672 doi: 10.1016/j.apenergy.2018.08.030 [14] Li Z J, Zuo L, Luhrs G, et al. Electromagnetic energy-harvesting shock absorbers: Design, modeling, and road tests. IEEE Trans Veh Technol, 2013, 62(3): 1065 doi: 10.1109/TVT.2012.2229308 [15] Li Z J, Zuo L, Kuang J, et al. Energy-harvesting shock absorber with a mechanical motion rectifier. Smart Mater Struct, 2013, 22(2): 025008 doi: 10.1088/0964-1726/22/2/025008 [16] Liu Y L, Xu L, Zuo L. Design, modeling, lab, and field tests of a mechanical-motion-rectifier-based energy harvester using a ball-screw mechanism. IEEE/ASME Trans Mechatron, 2017, 22(5): 1933 doi: 10.1109/TMECH.2017.2700485 [17] Xiong Q C, Qin B N, Li X F, et al. A rule-based damping control of MMR-based energy-harvesting vehicle suspension // 2020 American Control Conference (ACC). Denver, 2020: 2262 [18] Zhang Y X, Zhang X J, Zhan M, et al. Study on a novel hydraulic pumping regenerative suspension for vehicles. J Frankl Inst, 2015, 352(2): 485 doi: 10.1016/j.jfranklin.2014.06.005 [19] Zhang Y X, Chen H, Guo K H, et al. Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation. Appl Energy, 2017, 199: 1 doi: 10.1016/j.apenergy.2017.04.085 [20] Guo S J, Xu L, Liu Y L, et al. Modeling and experiments of a hydraulic electromagnetic energy-harvesting shock absorber. IEEE/ASME Trans Mechatron, 2017, 22(6): 2684 doi: 10.1109/TMECH.2017.2760341 [21] Fang Z G, Guo X X, Zuo L, et al. Theory and experiment of damping characteristics of hydraulic electromagnetic energy-regenerative shock absorber. J Jilin Univ Eng Technol Ed, 2014, 44(4): 939 doi: 10.13229/j.cnki.jdxbgxb201404007方志剛, 過學迅, 左磊, 等. 液電饋能式減振器阻尼特性理論及試驗. 吉林大學學報(工學版), 2014, 44(4):939 doi: 10.13229/j.cnki.jdxbgxb201404007 [22] Chen L, Zhang C L, Wang R C, et al. Modeling and optimization design of hydraulically interconnected energy-regenerative suspension. Trans Chin Soc Agric Mach, 2017, 48(1): 303 doi: 10.6041/j.issn.1000-1298.2017.01.040陳龍, 張承龍, 汪若塵, 等. 液壓互聯式饋能懸架建模與優化設計. 農業機械學報, 2017, 48(1):303 doi: 10.6041/j.issn.1000-1298.2017.01.040 [23] Wang R C, Jiang Q M, Ye Q, et al. Characteristics analysis and experiment of hydraulic interconnected energy-regenerative suspension. Trans Chin Soc Agric Mach, 2017, 48(8): 350 doi: 10.6041/j.issn.1000-1298.2017.08.042汪若塵, 蔣秋明, 葉青, 等. 液壓互聯饋能懸架特性分析與試驗. 農業機械學報, 2017, 48(8):350 doi: 10.6041/j.issn.1000-1298.2017.08.042 [24] Zou J Y, Guo X X, Abdelkareem M A A, et al. Modelling and ride analysis of a hydraulic interconnected suspension based on the hydraulic energy regenerative shock absorbers. Mech Syst Signal Process, 2019, 127: 345 doi: 10.1016/j.ymssp.2019.02.047 [25] Chen Y Z, Qin B N, Guo S J, et al. Asymmetric energy harvesting and hydraulically interconnected suspension: Modeling and validations // Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Anaheim, 2019: 98402 [26] Dixon J C. The Shock Absorber Handbook. 2nd Ed. Chichester: John Wiley & Sons, 2008 [27] Ministry of National Machinery Industry. QC/T545—1999 Telescopic Shock Absorber Bench Test Method. Beijing: China Planning Press, 1999國家機械工業局. QC/T545—1999汽車筒式減振器臺架試驗方法. 北京: 中國計劃出版社, 1999 -