Simulation study of the protective performance of composite structure carbon fiber bulletproof board
-
摘要: 針對纖維/基體間的界面脫黏決定能量吸收這一核心問題,采用一系列標準黏結力參數調整復合板界面黏合力,并通過層間黏性行為和損傷參數模擬界面分層過程。利用ABAQUS有限元軟件中的Explicit分析模塊建立陶瓷/纖維復合防彈板的高速沖擊損傷分析模型,通過分析彈丸初始速度與剩余速度,研究復合防彈板的各組分結構參數、纖維指標、鋪層設計對靶板及層合板抗侵徹行為的作用規律,并結合馮·米塞斯(Von-Mises)應力云圖和基體損傷云圖,探討復合防彈板的受力與損傷形式。最后,利用彈道沖擊實驗成功驗證了模型的準確性。實驗結果表明:由13 mm厚SiC陶瓷、5 mm厚碳纖維復合材料板和17 mm厚超高分子量聚乙烯纖維(UHMWPE)復合材料背板組成的復合防彈板可有效防御彈丸侵徹,對彈丸動能吸收和彈速衰減作用明顯。Abstract: Ceramic composite bulletproof armor is composed of hard ceramic and metal or fiber composite back plate and used as lightweight, protective armor to prevent the penetration of high-speed projectiles, such as armor-piercing projectiles. Presently, ceramic composite bulletproof armor has been a research hotspot in military protection. Alumina, boron carbide, silicon carbide, and silicon nitride are commonly used as hard ceramic materials in ceramic composite bulletproof armor systems to resist projectile impact. High-performance fibers, particularly carbon and ultrahigh-molecular-weight polyethylene (UHMWPE) fibers, are combined to improve the deformation resistance of the ceramic layer. Carbon fiber is a high-quality fiber with high specific strength and specific modulus. Carbon fiber plays an important role in ensuring the protection stability of ceramic bulletproof plates. The energy absorption process and absorption mechanism of ceramic composite bulletproof armor are complex at the moment of resisting projectile penetration. The simulation of the projectile penetration under different experimental conditions has always been the focus of bulletproof armor research. To address the core problem that the interfacial debonding between fiber and matrix determines energy absorption, a series of standard adhesion parameters are adopted to adjust the interfacial adhesion force of composite plates, and the interfacial delamination process is simulated based on the interfacial adhesion behavior and damage parameters. Simultaneously, using ABAQUS/Explicit, a high-speed impact damage analysis model of the ceramic/fiber composite bulletproof plate was established. Based on the analysis of the initial and residual velocities of the projectile, we investigated the relationship between structural components of the composite bulletproof plate, fiber performance, laminated layer structures, and resistance to penetration. Combined with the von Mises stress and matrix damage nephograms, the stress and damage forms of the composite bulletproof plate were discussed. Finally, the accuracy of the model was verified through ballistic impact experiments. The experimental results showed that the bulletproof plate composed of 13 mm SiC ceramic, 5 mm carbon fiber composite, and 17 mm UHMWPE composite effectively prevented the penetration of projectile and exhibited evident effects on the absorption of the kinetic energy of the projectile and the attenuation of projectile velocity.
-
圖 11 裝配有不同厚度UHMWPE層合板的復合防彈板的沖擊結果。(a)UHMWPE層合板厚度為16 mm;(b)UHMWPE層合板厚度為17 mm;(c)UHMWPE層合板厚度為17 mm的模擬結果
Figure 11. Projectile velocity of UHMWPE laminate with different thicknesses: (a) UHMWPE laminate thickness is 16 mm; (b) UHMWPE laminate thickness is 17 mm; (c) simulation result of 17 mm UHMWPE laminate
ρ/(kg·m?3) G/GPa A B C M N β $ {\dot{\varepsilon }}_{0} $/s?1 3215.0 193.0 0.960 0.350 0.0090 1.0 0.650 1.0 1.0 $ {\sigma }_{\rm{max}}^{\rm{f}} $/GPa HEL/GPa $ {p}_{HEL} $/GPa D1 D2 K1/GPa K2/GPa K3/GPa 0.1320 11.70 5.130 0.480 0.480 220.0 361.0 0 Mode Normalised elastic modulus/ (GPa·mm?1) Inter-laminar strength /MPa Inter-laminar fracture toughness/ (kJ·m?2) Mode I 1373.3 493.3 493.3 Mode II 62.3 92.3 92.3 Mode III 0.28 0.79 0.79 表 5 不同種類碳纖維性能參數
Table 5. Performance parameters of carbon fiber
Designation Tensile Strength/
MPaTensile Modulus/
GPaDensity /
(g·cm?3)Elongation/
%T700SC 4900 230 1.8 2.1 M40JB 4400 377 1.75 1.2 M60JB 3820 588 1.93 0.7 表 6 17 mm UHMWPE層合板與仿真模擬云圖的背板背凸形變量
Table 6. Backplate convex variables of 17 mm UHMWPE laminate and simulated cloud image
Data type Laminate 1 of 17 mm UHMWPE Laminate 2 of 17 mm UHMWPE Simulation cloud image Height of convex deformation/mm 21.2 21.4 21.5 www.77susu.com -
參考文獻
[1] Chen L, Xu Z W, Li J L, et al. Structure and bullet-proof mechanism of ballistic composites. J Mater Eng, 2010, 38(11): 94 doi: 10.3969/j.issn.1001-4381.2010.11.022陳磊, 徐志偉, 李嘉祿, 等. 防彈復合材料結構及其防彈機理. 材料工程, 2010, 38(11):94 doi: 10.3969/j.issn.1001-4381.2010.11.022 [2] Gu B F, Gong L H, Xu G Y. Ballistic resistance mechanism and performance of UHMWPE composites. Fiber Compos, 2006, 23(1): 20 doi: 10.3969/j.issn.1003-6423.2006.01.007顧冰芳, 龔烈航, 徐國躍. UHMWPE纖維復合材料防彈機理和性能. 纖維復合材料, 2006, 23(1):20 doi: 10.3969/j.issn.1003-6423.2006.01.007 [3] Kurzawa A, Pyka D, Jamroziak K, et al. Analysis of ballistic resistance of composites based on EN AC-44200 aluminum alloy reinforced with Al2O3 particles. Compos Struct, 2018, 201: 834 doi: 10.1016/j.compstruct.2018.06.099 [4] Li C, Liu J C. Development and application of advanced composite armor technology. New Chem Mater, 2004, 32(6): 46 doi: 10.3969/j.issn.1006-3536.2004.06.015李超, 劉建超. 復合材料裝甲技術的發展及應用. 化工新型材料, 2004, 32(6):46 doi: 10.3969/j.issn.1006-3536.2004.06.015 [5] Medvedovski E. Ballistic performance of armour ceramics: Influence of design and structure. Part 1. Ceram Int, 2010, 36(7): 2103 doi: 10.1016/j.ceramint.2010.05.021 [6] Zhou Z S, Wu G H, Jiang L T, et al. Analysis of morphology and microstructure of B4C/2024Al composites after 7.62 mm ballistic impact. Mater Des, 2014, 63: 658 [7] Karamis M B, Tasdemirci A, Nair F. Failure and tribological behaviour of the AA5083 and AA6063 composites reinforced by SiC particles under ballistic impact. Compos A:Appl Sci Manuf, 2003, 34(3): 217 doi: 10.1016/S1359-835X(03)00024-1 [8] Hou H L, Zhu X, Kan Y L. The advance of ballistic performance of light ceramic composite armour under the impact of projectile. Acta Armamentarii, 2008, 29(2): 208 doi: 10.3321/j.issn:1000-1093.2008.02.017侯海量, 朱錫, 闞于龍. 輕型陶瓷復合裝甲結構抗彈性能研究進展. 兵工學報, 2008, 29(2):208 doi: 10.3321/j.issn:1000-1093.2008.02.017 [9] Li J J, Zhang M A. Anti-bullet carbon fiber reinforced plastics. Fiber Reinf Plast, 2004(5): 9李家駒, 張茂安. 防彈碳纖維復合材料. 玻璃鋼/復合材料, 2004(5):9 [10] Zhang X Q, Yao X H, Yang G T, et al. Numerical simulation of penetration of composite ceramic/metal armours. J South China Univ Technol Nat Sci, 2005, 33(4): 69張曉晴, 姚小虎, 楊桂通, 等. 陶瓷/金屬復合靶板侵徹問題的數值模擬. 華南理工大學學報(自然科學版), 2005, 33(4):69 [11] Zhang B, Nian X Z, Jin F N, et al. Failure analyses of flexible Ultra-High Molecular Weight Polyethylene (UHMWPE) fiber reinforced anti-blast wall under explosion. Compos Struct, 2018, 184: 759 doi: 10.1016/j.compstruct.2017.10.037 [12] Schwab M, Todt M, Tauchner J, et al. Modeling, simulation, and experiments of high velocity impact on laminated composites. Compos Struct, 2018, 205: 42 doi: 10.1016/j.compstruct.2018.08.047 [13] Liu W L, Chen Z H, Chen Z F, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor. Mater Des, 2015, 87: 421 doi: 10.1016/j.matdes.2015.08.024 [14] Tepeduzu B, Karakuzu R. Ballistic performance of ceramic/composite structures. Ceram Int, 2019, 45(2): 1651 doi: 10.1016/j.ceramint.2018.10.042 [15] Johnson G R, Holmquist T J. Evaluation of cylinder-impact test data for constitutive model constants. J Appl Phys, 1988, 64(8): 3901 doi: 10.1063/1.341344 [16] Holmquist T J, Johnson G R. Modeling prestressed ceramic and its effect on ballistic performance. Int J Impact Eng, 2005, 31(2): 113 doi: 10.1016/j.ijimpeng.2003.11.002 [17] Zhou Q, Liu T, He Y M. Study on new anti-trauma material in bulletproof armour. China Pers Prot Equip, 2019(1): 22周慶, 劉婷, 何業茂. 防彈裝甲中新型抗凹陷材料的研究. 中國個體防護裝備, 2019(1):22 [18] Johnson G R, Holmquist T J. An improved computational constitutive model for brittle materials // AIP Conference Proceedings. Colorado, 1994: 981 [19] Sharma A, Mishra R, Jain S, et al. Deformation behavior of single and multi-layered materials under impact loading. Thin Walled Struct, 2018, 126: 193 doi: 10.1016/j.tws.2017.08.021 [20] Wang L, Zheng C X, Luo H Y, et al. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel. Compos Struct, 2015, 134: 475 doi: 10.1016/j.compstruct.2015.08.107 [21] Cheeseman B A, Bogetti T A. Ballistic impact into fabric and compliant composite laminates. Compos Struct, 2003, 61(1-2): 161 doi: 10.1016/S0263-8223(03)00029-1 [22] Shi Y, Swait T, Soutis C. Modelling damage evolution in composite laminates subjected to low velocity impact. Compos Struct, 2012, 94(9): 2902 doi: 10.1016/j.compstruct.2012.03.039 [23] Sun X C, Li Y Q, Wu Z, et al. Study on bulletproof property of STF-flexible composite. J Zhejiang Sci Tech Univ, 2014, 31(3): 127孫西超, 李艷清, 伍仲, 等. STF?柔性復合材料的防彈性能研究. 浙江理工大學學報, 2014, 31(3):127 [24] Mohagheghian I, Wang Y, Zhou J, et al. Deformation and damage mechanisms of laminated glass windows subjected to high velocity soft impact. Int J Solids Struct, 2017, 109: 46 doi: 10.1016/j.ijsolstr.2017.01.006 [25] Palomar M, Lozano-Mínguez E, Rodríguez-Millán M, et al. Relevant factors in the design of composite ballistic helmets. Compos Struct, 2018, 201: 49 doi: 10.1016/j.compstruct.2018.05.076 [26] Yue X Y, Li Z N, Guo G Y, et al. Preparation and ballistic resistance of B4C-Al foam composites with a bilayer structure. Chin J Eng, 2014, 36(8): 1082岳新艷, 李振楠, 郭冠宇, 等. 碳化硼?泡沫鋁雙層復合材料的制備及其防彈性能. 工程科學學報, 2014, 36(8):1082 -