Effect of stress waveform on the rock blasting crack propagation mechanism using numerical simulation
-
摘要: 運用RFPA3D動力分析軟件模擬了沖擊動力作用下含預制裂紋巖石的裂紋擴展過程,探究了應力波峰值、能量、上升及下降速率對巖石裂紋擴展過程的影響。研究表明動載下巖石裂紋擴展形態受應力波上升速率影響,應力波上升速率越快,孔周邊巖石越破碎;應力波能量影響裂紋擴展長度,能量越大裂紋擴展越長,而相同能量條件下,應力波上升速率越小,裂紋擴展距離越遠,但孔邊破碎程度越弱;上升速率和應力波上升沿能量共同影響著炮孔粉碎區半徑。數值模擬結果很好地揭示了不同應力波峰值、能量與上升/下降速率對巖石的破碎機制,在實際爆破作業中可以通過水炮泥封口或者采用空氣柱間隔裝藥結構來延長應力波作用時間,以達到擴大爆破影響范圍的目的,而通過選取合適類型與配比的炸藥來提升應力波上升速率從而增強孔邊破碎效果。Abstract: The type, proportion, and charging method of explosives produce different stress waveforms, which greatly affect rock crack propagation. Because of the complex interaction law between waveform parameters such as the peak value, wavelength, energy, and rise or fall rate, and the limited physical and mechanical test conditions, quantitatively controlling waveform parameters in a blasting test is difficult. Numerical simulation has advantages in revealing the influence law of the stress wave. In this paper, RFPA3D dynamic analysis software was used to simulate the crack propagation in a rock with a prefabricated crack under impact loads, and the effects of the stress wave peak value, energy, rise rate, and fall rate of the stress wave on the rock crack propagation process were investigated. Results show that the rock crack propagation pattern under dynamic loads was affected by the rise rate of the stress wave. The faster the stress wave rose, the more breakages occurred around the hole. For the crack propagation length, the crack grew longer with the increase in the stress wave energy. When the stress wave energy was constant, the crack grew farther with the decrease in the rise rate, but the broken degree around the hole was decreased. The rise rate and the energy of the rising edge of the stress wave affected the radius of the comminution zone. Numerical simulation results revealed the rock crushing mechanism of different stress wave peak values, energies, and rise or fall rates. In a practical engineering blasting operation, to expand the impact range of blasting, extending the action time using a water cannon mud seal or an air column interval charge structure was suggested. In addition, the appropriate type and proportion of explosives were also selected to increase the stress wave’s rise rate to improve the effect of hole edge crushing.
-
Key words:
- explosive load /
- waveform /
- prefabricated crack /
- rock crack /
- three dimensional numerical simulation
-
表 1 材料參數
Table 1. Material parameters
Homogeneity index Elastic modulus / GPa Uniaxial compressive strength / MPa Density / (kg·m?3) Poisson ratio Friction angle / (°) 5 4.5 90 1120 0.25 30 www.77susu.com -
參考文獻
[1] Zhu Z M, Mohanty B, Xie H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks. Int J Rock Mech Min Sci, 2007, 44(3): 412 doi: 10.1016/j.ijrmms.2006.09.002 [2] Yue Z W, Guo Y, Wang X. Experimental study of crack propagation under blasting load in notched boreholes. Chin J Rock Mech Eng, 2015, 34(10): 2018岳中文, 郭洋, 王煦. 切槽孔爆炸載荷下裂紋擴展行為的實驗研究. 巖石力學與工程學報, 2015, 34(10):2018 [3] Yue Z W, Guo Y, Wang X, et al. Influence of empty hole shape on directional fracture controlled blasting of rock. Rock Soil Mech, 2016, 37(2): 376岳中文, 郭洋, 王煦, 等. 空孔形狀對巖石定向斷裂爆破影響規律的研究. 巖土力學, 2016, 37(2):376 [4] Zhang Z R, Zuo J J, Guo Y X. Effects of empty hole and its defects on the crack propagation under explosive loading. J Vib Shock, 2019, 38(18): 115張召冉, 左進京, 郭義先. 爆炸載荷下空孔及其缺陷對裂紋擴展影響機理研究. 振動與沖擊, 2019, 38(18):115 [5] Zhang Z R, Zuo J J, Guo Y X. Crack propagation behavior of empty hole defects under blast load. J Vib Shock, 2020, 39(3): 111張召冉, 左進京, 郭義先. 爆炸載荷下空孔缺陷與爆生裂紋擴展行為研究. 振動與沖擊, 2020, 39(3):111 [6] Yang X, Pu C J, Tang X, et al. Experimental study of effects of manual crack on blasting cracks propagation. Blasting, 2014, 31(2): 26 doi: 10.3963/j.issn.1001-487X.2014.02.006楊鑫, 蒲傳金, 唐雄, 等. 人工裂隙對爆炸裂紋擴展影響的試驗研究. 爆破, 2014, 31(2):26 doi: 10.3963/j.issn.1001-487X.2014.02.006 [7] Yang R S, Su H. Experimental study on crack propagation with pre-crack under explosion load. J China Coal Soc, 2019, 44(2): 482楊仁樹, 蘇洪. 爆炸荷載下含預裂縫的裂紋擴展實驗研究. 煤炭學報, 2019, 44(2):482 [8] Yang R S, Ding C X, Yang L Y, et al. Experimental study on interaction effect of dynamic cracks induced by blast. Blasting, 2016, 33(2): 1 doi: 10.3963/j.issn.1001-487X.2016.02.001楊仁樹, 丁晨曦, 楊立云, 等. 動態爆生裂紋相互影響的試驗研究. 爆破, 2016, 33(2):1 doi: 10.3963/j.issn.1001-487X.2016.02.001 [9] Yang R S, Zuo J J, Xiao C L, et al. Tests for interaction between static crack and dynamic one under explosion loading. J Vib Shock, 2018, 37(13): 65楊仁樹, 左進京, 肖成龍, 等. 爆炸載荷作用下靜裂紋對運動裂紋擴展影響的實驗研究. 振動與沖擊, 2018, 37(13):65 [10] Li T T, Fei A P, Niu X F, et al. Numerical simulation of blasting at different positions of granite by different explosives. Eng Blasting, 2019, 25(4): 8 doi: 10.3969/j.issn.1006-7051.2019.04.002李婷婷, 費愛萍, 牛雪峰, 等. 不同炸藥對花崗巖不同位置爆破的數值模擬. 工程爆破, 2019, 25(4):8 doi: 10.3969/j.issn.1006-7051.2019.04.002 [11] Pei H B, Nie J X, Qin J F, et al. Damage effects of explosion of RDX-based aluminized explosives in concrete. Chin J High Press Phys, 2015, 29(1): 23 doi: 10.11858/gywlxb.2015.01.004裴紅波, 聶建新, 覃劍鋒, 等. RDX基含鋁炸藥在混凝土中爆炸的實驗研究. 高壓物理學報, 2015, 29(1):23 doi: 10.11858/gywlxb.2015.01.004 [12] Liu W R. Rational utilization of several industrial explosives in Zhunger open-pit mine. Opencast Min Technol, 2019, 34(6): 51劉萬榮. 幾種工業炸藥在準格爾露天礦的合理利用. 露天采礦技術, 2019, 34(6):51 [13] Yang M H, Xie X H, Zhang N. Influences on the emulsion explosive characteristics of underwater explosions by physically sensitized ways. Coal Mine Blasting, 2008(4): 12楊敏會, 謝興華, 張楠. 物理敏化對乳化炸藥水下爆炸特性的影響. 煤礦爆破, 2008(4):12 [14] Wang W L. Drill Blasting. Beijing: China Coal Industry Press, 1984王文龍. 鉆眼爆破. 北京: 煤炭工業出版社, 1984 [15] Zhao Q, Nie J X, Zhang W, et al. Effect of the Al/O ratio on the Al reaction of aluminized RDX-based explosives. Chin Phys B, 2017, 26(5): 054502 doi: 10.1088/1674-1056/26/5/054502 [16] Donzé F V, Bouchez J, Magnier S A. Modeling fractures in rock blasting. Int J Rock Mech Min Sci, 1997, 34(8): 1153 doi: 10.1016/S1365-1609(97)80068-8 [17] Ma G W, An X M. Numerical simulation of blasting-induced rock fractures. Int J Rock Mech Min Sci, 2008, 45(6): 966 doi: 10.1016/j.ijrmms.2007.12.002 [18] Cho S H, Kaneko K. Influence of the applied pressure waveform on the dynamic fracture processes in rock. Int J Rock Mech Min Sci, 2004, 41(5): 771 doi: 10.1016/j.ijrmms.2004.02.006 [19] Zhong B B, Li H, Zhang Y B. Numerical simulation of dynamic cracks propagation of rock under blasting loading. Explos Shock Waves, 2016, 36(6): 825 doi: 10.11883/1001-1455(2016)06-0825-07鐘波波, 李宏, 張永彬. 爆炸荷載作用下巖石動態裂紋擴展的數值模擬. 爆炸與沖擊, 2016, 36(6):825 doi: 10.11883/1001-1455(2016)06-0825-07 [20] Yang Y F, Tang C A, Xia K W. Study on crack curving and branching mechanism in quasi-brittle materials under dynamic biaxial loading. Int J Fract, 2012, 177(1): 53 doi: 10.1007/s10704-012-9755-6 [21] Tang C A, Zhao W. RFPA2D system for rock failure process analysis. Chin J Rock Mech Eng, 1997, 16(5): 507 doi: 10.3321/j.issn:1000-6915.1997.05.018唐春安, 趙文. 巖石破裂全過程分析軟件系統RFPA2D. 巖石力學與工程學報, 1997, 16(5):507 doi: 10.3321/j.issn:1000-6915.1997.05.018 [22] Liang Z Z, Xing H, Wang S Y, et al. A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw. Comput Geotech, 2012, 45: 19 doi: 10.1016/j.compgeo.2012.04.011 [23] Li B, Chen W Z, Liu X Q, et al. Discrete Element Simulation of Attenuation Law of Blasting Stress Wave // Proceedings of the International Conference on Chemical, Material and Food Engineering. Kunming, 2015: 448 [24] Lu S S. Research on Dynamic Response and Failure Mode of Tunnel Surrounding Rock under Blasting Loading [Dissertation]. Tianjin: Tianjin University, 2012盧珊珊. 爆破荷載作用下隧洞圍巖動力響應及破壞模式研究[學位論文]. 天津: 天津大學, 2012 [25] Zhang Q. Smash districts and expanding of cavities in rock blasting. Explos Shock Waves, 1990, 10(1): 68張奇. 巖石爆破的粉碎區及其空腔膨脹. 爆炸與沖擊, 1990, 10(1):68 [26] Leng Z D, Lu W B, Chen M, et al. Improved calculation model for the size of crushed zone around blasthole. Explos Shock Waves, 2015, 35(1): 101 doi: 10.11883/1001-1455(2015)01-0101-07冷振東, 盧文波, 陳明, 等. 巖石鉆孔爆破粉碎區計算模型的改進. 爆炸與沖擊, 2015, 35(1):101 doi: 10.11883/1001-1455(2015)01-0101-07 -