<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

應力波形對巖石爆生裂紋擴展機制影響的數值模擬

李永祺 梁正召 錢希坤 劉紅波

李永祺, 梁正召, 錢希坤, 劉紅波. 應力波形對巖石爆生裂紋擴展機制影響的數值模擬[J]. 工程科學學報, 2022, 44(12): 2057-2068. doi: 10.13374/j.issn2095-9389.2021.04.14.004
引用本文: 李永祺, 梁正召, 錢希坤, 劉紅波. 應力波形對巖石爆生裂紋擴展機制影響的數值模擬[J]. 工程科學學報, 2022, 44(12): 2057-2068. doi: 10.13374/j.issn2095-9389.2021.04.14.004
LI Yong-qi, LIANG Zheng-zhao, QIAN Xi-kun, LIU Hong-bo. Effect of stress waveform on the rock blasting crack propagation mechanism using numerical simulation[J]. Chinese Journal of Engineering, 2022, 44(12): 2057-2068. doi: 10.13374/j.issn2095-9389.2021.04.14.004
Citation: LI Yong-qi, LIANG Zheng-zhao, QIAN Xi-kun, LIU Hong-bo. Effect of stress waveform on the rock blasting crack propagation mechanism using numerical simulation[J]. Chinese Journal of Engineering, 2022, 44(12): 2057-2068. doi: 10.13374/j.issn2095-9389.2021.04.14.004

應力波形對巖石爆生裂紋擴展機制影響的數值模擬

doi: 10.13374/j.issn2095-9389.2021.04.14.004
基金項目: 國家自然科學基金資助項目(42277150,41977219)
詳細信息
    通訊作者:

    E-mail: LiangZZ@dlut.edu.cn

  • 中圖分類號: TG142.71

Effect of stress waveform on the rock blasting crack propagation mechanism using numerical simulation

More Information
  • 摘要: 運用RFPA3D動力分析軟件模擬了沖擊動力作用下含預制裂紋巖石的裂紋擴展過程,探究了應力波峰值、能量、上升及下降速率對巖石裂紋擴展過程的影響。研究表明動載下巖石裂紋擴展形態受應力波上升速率影響,應力波上升速率越快,孔周邊巖石越破碎;應力波能量影響裂紋擴展長度,能量越大裂紋擴展越長,而相同能量條件下,應力波上升速率越小,裂紋擴展距離越遠,但孔邊破碎程度越弱;上升速率和應力波上升沿能量共同影響著炮孔粉碎區半徑。數值模擬結果很好地揭示了不同應力波峰值、能量與上升/下降速率對巖石的破碎機制,在實際爆破作業中可以通過水炮泥封口或者采用空氣柱間隔裝藥結構來延長應力波作用時間,以達到擴大爆破影響范圍的目的,而通過選取合適類型與配比的炸藥來提升應力波上升速率從而增強孔邊破碎效果。

     

  • 圖  1  不同炸藥形成的應力波。(a)裝藥結構[14]; (b)炸藥配比[15]

    Figure  1.  Stress waves formed by different explosives: (a) explosive charge structure[14]; (b) explosive ratio[15]

    圖  2  數值模型

    Figure  2.  Numerical model

    圖  3  荷載示意圖。 (a)H-1~H-6;(b)F-7~F-12;(c)S-13~S-17;(d)X-18~X-22;(e)N-23~N-27

    Figure  3.  Loads diagram: (a) H-1–H-6; (b) F-7–F-12; (c) S-13–S-17; (d) X-18–X-22; (e) N-23–N-27

    圖  4  物理試驗與數值模擬結果對比圖。(a)物理試驗;(b)數值模擬

    Figure  4.  Comparison of (a) physical experiment and (b) numerical simulation

    圖  5  荷載 H-3作用下模型最小主應力云圖。(a)20 μs;(b)30 μs;(c)40 μs;(d)60 μs;(e)80 μs;(f)120 μs

    Figure  5.  Minimum principal stress under load H-3: (a) 20 μs; (b) 30 μs; (c) 40 μs; (d) 60 μs; (e) 80 μs; (f) 120 μs

    圖  6  右翼裂紋擴展尖端受力圖

    Figure  6.  Stress on the tip of the right wing crack propagation process

    圖  7  不同波形應力波作用下的巖石裂紋擴展演化圖像

    Figure  7.  Rock crack propagation under different stress waveforms

    圖  8  不同荷載作用下裂紋擴展細節分析。(a)H-2;(b)F-8;(c)H-5;(d)F-11

    Figure  8.  Crack growth analysis under different loads: (a) H-2; (b) F-8; (c) H-5; (d) F-11

    圖  9  不同峰值應力波F-7~F-12(相同上升/下降速率)的裂紋擴展規律

    Figure  9.  Crack propagation with different peak stress waves F-7–F-12 (similar rise/fall rates)

    圖  10  不同下降速率應力波X-18~X-22(相同上升速率)的裂紋擴展細節分析

    Figure  10.  Detailed analysis of the crack propagation of stress waves X-18–X-22 with different fall rates (similar rise rates)

    圖  11  不同峰值作用下主裂紋擴展。(a)H-1~H-6;(b)F-7~F-12

    Figure  11.  Main crack propagation under different peaks: (a) H-1–H-6; (b) F-7–F-12

    圖  12  模型累積損傷單元統計圖。(a)荷載S-13~S-17;(b)荷載X-18~X-22

    Figure  12.  Model cumulative damage unit statistics: (a) loads S-13–S-17; (b) loads X-18–X-22

    圖  13  峰值應力波能量對裂紋擴展長度的影響。(a)主裂紋–峰值荷載;(b)右翼裂紋–峰值荷載;(c)不同峰值荷載的上升速率

    Figure  13.  Effect of the peak stress wave energy on the crack growth length: (a) main crack–peak loads; (b) right flank crack–peak loads; (c) rise rate of different peak loads

    圖  14  速率應力波能量對裂紋擴展長度的影響。(a)主裂紋–速率荷載;(b)右翼裂紋–速率荷載;(c)不同速率荷載的上升速率

    Figure  14.  Effect of the rate of the stress wave energy on the crack growth length: (a) main crack–rate loads; (b) right flank crack–ate loads; (c) rise rate of different rate loads

    圖  15  荷載N-23~N-27作用下裂紋擴展長度

    Figure  15.  Crack growth length under loads N-23–N-27

    圖  16  上升速率(a)和應力波上升沿能量(b)對粉碎區半徑的影響

    Figure  16.  Effect of the rise rate (a) and stress wave’s rising edge energy (b) on the radius of the crushing zone

    表  1  材料參數

    Table  1.   Material parameters

    Homogeneity indexElastic modulus / GPaUniaxial compressive strength / MPaDensity / (kg·m?3)Poisson ratioFriction angle / (°)
    54.59011200.2530
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhu Z M, Mohanty B, Xie H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks. Int J Rock Mech Min Sci, 2007, 44(3): 412 doi: 10.1016/j.ijrmms.2006.09.002
    [2] Yue Z W, Guo Y, Wang X. Experimental study of crack propagation under blasting load in notched boreholes. Chin J Rock Mech Eng, 2015, 34(10): 2018

    岳中文, 郭洋, 王煦. 切槽孔爆炸載荷下裂紋擴展行為的實驗研究. 巖石力學與工程學報, 2015, 34(10):2018
    [3] Yue Z W, Guo Y, Wang X, et al. Influence of empty hole shape on directional fracture controlled blasting of rock. Rock Soil Mech, 2016, 37(2): 376

    岳中文, 郭洋, 王煦, 等. 空孔形狀對巖石定向斷裂爆破影響規律的研究. 巖土力學, 2016, 37(2):376
    [4] Zhang Z R, Zuo J J, Guo Y X. Effects of empty hole and its defects on the crack propagation under explosive loading. J Vib Shock, 2019, 38(18): 115

    張召冉, 左進京, 郭義先. 爆炸載荷下空孔及其缺陷對裂紋擴展影響機理研究. 振動與沖擊, 2019, 38(18):115
    [5] Zhang Z R, Zuo J J, Guo Y X. Crack propagation behavior of empty hole defects under blast load. J Vib Shock, 2020, 39(3): 111

    張召冉, 左進京, 郭義先. 爆炸載荷下空孔缺陷與爆生裂紋擴展行為研究. 振動與沖擊, 2020, 39(3):111
    [6] Yang X, Pu C J, Tang X, et al. Experimental study of effects of manual crack on blasting cracks propagation. Blasting, 2014, 31(2): 26 doi: 10.3963/j.issn.1001-487X.2014.02.006

    楊鑫, 蒲傳金, 唐雄, 等. 人工裂隙對爆炸裂紋擴展影響的試驗研究. 爆破, 2014, 31(2):26 doi: 10.3963/j.issn.1001-487X.2014.02.006
    [7] Yang R S, Su H. Experimental study on crack propagation with pre-crack under explosion load. J China Coal Soc, 2019, 44(2): 482

    楊仁樹, 蘇洪. 爆炸荷載下含預裂縫的裂紋擴展實驗研究. 煤炭學報, 2019, 44(2):482
    [8] Yang R S, Ding C X, Yang L Y, et al. Experimental study on interaction effect of dynamic cracks induced by blast. Blasting, 2016, 33(2): 1 doi: 10.3963/j.issn.1001-487X.2016.02.001

    楊仁樹, 丁晨曦, 楊立云, 等. 動態爆生裂紋相互影響的試驗研究. 爆破, 2016, 33(2):1 doi: 10.3963/j.issn.1001-487X.2016.02.001
    [9] Yang R S, Zuo J J, Xiao C L, et al. Tests for interaction between static crack and dynamic one under explosion loading. J Vib Shock, 2018, 37(13): 65

    楊仁樹, 左進京, 肖成龍, 等. 爆炸載荷作用下靜裂紋對運動裂紋擴展影響的實驗研究. 振動與沖擊, 2018, 37(13):65
    [10] Li T T, Fei A P, Niu X F, et al. Numerical simulation of blasting at different positions of granite by different explosives. Eng Blasting, 2019, 25(4): 8 doi: 10.3969/j.issn.1006-7051.2019.04.002

    李婷婷, 費愛萍, 牛雪峰, 等. 不同炸藥對花崗巖不同位置爆破的數值模擬. 工程爆破, 2019, 25(4):8 doi: 10.3969/j.issn.1006-7051.2019.04.002
    [11] Pei H B, Nie J X, Qin J F, et al. Damage effects of explosion of RDX-based aluminized explosives in concrete. Chin J High Press Phys, 2015, 29(1): 23 doi: 10.11858/gywlxb.2015.01.004

    裴紅波, 聶建新, 覃劍鋒, 等. RDX基含鋁炸藥在混凝土中爆炸的實驗研究. 高壓物理學報, 2015, 29(1):23 doi: 10.11858/gywlxb.2015.01.004
    [12] Liu W R. Rational utilization of several industrial explosives in Zhunger open-pit mine. Opencast Min Technol, 2019, 34(6): 51

    劉萬榮. 幾種工業炸藥在準格爾露天礦的合理利用. 露天采礦技術, 2019, 34(6):51
    [13] Yang M H, Xie X H, Zhang N. Influences on the emulsion explosive characteristics of underwater explosions by physically sensitized ways. Coal Mine Blasting, 2008(4): 12

    楊敏會, 謝興華, 張楠. 物理敏化對乳化炸藥水下爆炸特性的影響. 煤礦爆破, 2008(4):12
    [14] Wang W L. Drill Blasting. Beijing: China Coal Industry Press, 1984

    王文龍. 鉆眼爆破. 北京: 煤炭工業出版社, 1984
    [15] Zhao Q, Nie J X, Zhang W, et al. Effect of the Al/O ratio on the Al reaction of aluminized RDX-based explosives. Chin Phys B, 2017, 26(5): 054502 doi: 10.1088/1674-1056/26/5/054502
    [16] Donzé F V, Bouchez J, Magnier S A. Modeling fractures in rock blasting. Int J Rock Mech Min Sci, 1997, 34(8): 1153 doi: 10.1016/S1365-1609(97)80068-8
    [17] Ma G W, An X M. Numerical simulation of blasting-induced rock fractures. Int J Rock Mech Min Sci, 2008, 45(6): 966 doi: 10.1016/j.ijrmms.2007.12.002
    [18] Cho S H, Kaneko K. Influence of the applied pressure waveform on the dynamic fracture processes in rock. Int J Rock Mech Min Sci, 2004, 41(5): 771 doi: 10.1016/j.ijrmms.2004.02.006
    [19] Zhong B B, Li H, Zhang Y B. Numerical simulation of dynamic cracks propagation of rock under blasting loading. Explos Shock Waves, 2016, 36(6): 825 doi: 10.11883/1001-1455(2016)06-0825-07

    鐘波波, 李宏, 張永彬. 爆炸荷載作用下巖石動態裂紋擴展的數值模擬. 爆炸與沖擊, 2016, 36(6):825 doi: 10.11883/1001-1455(2016)06-0825-07
    [20] Yang Y F, Tang C A, Xia K W. Study on crack curving and branching mechanism in quasi-brittle materials under dynamic biaxial loading. Int J Fract, 2012, 177(1): 53 doi: 10.1007/s10704-012-9755-6
    [21] Tang C A, Zhao W. RFPA2D system for rock failure process analysis. Chin J Rock Mech Eng, 1997, 16(5): 507 doi: 10.3321/j.issn:1000-6915.1997.05.018

    唐春安, 趙文. 巖石破裂全過程分析軟件系統RFPA2D. 巖石力學與工程學報, 1997, 16(5):507 doi: 10.3321/j.issn:1000-6915.1997.05.018
    [22] Liang Z Z, Xing H, Wang S Y, et al. A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw. Comput Geotech, 2012, 45: 19 doi: 10.1016/j.compgeo.2012.04.011
    [23] Li B, Chen W Z, Liu X Q, et al. Discrete Element Simulation of Attenuation Law of Blasting Stress Wave // Proceedings of the International Conference on Chemical, Material and Food Engineering. Kunming, 2015: 448
    [24] Lu S S. Research on Dynamic Response and Failure Mode of Tunnel Surrounding Rock under Blasting Loading [Dissertation]. Tianjin: Tianjin University, 2012

    盧珊珊. 爆破荷載作用下隧洞圍巖動力響應及破壞模式研究[學位論文]. 天津: 天津大學, 2012
    [25] Zhang Q. Smash districts and expanding of cavities in rock blasting. Explos Shock Waves, 1990, 10(1): 68

    張奇. 巖石爆破的粉碎區及其空腔膨脹. 爆炸與沖擊, 1990, 10(1):68
    [26] Leng Z D, Lu W B, Chen M, et al. Improved calculation model for the size of crushed zone around blasthole. Explos Shock Waves, 2015, 35(1): 101 doi: 10.11883/1001-1455(2015)01-0101-07

    冷振東, 盧文波, 陳明, 等. 巖石鉆孔爆破粉碎區計算模型的改進. 爆炸與沖擊, 2015, 35(1):101 doi: 10.11883/1001-1455(2015)01-0101-07
  • 加載中
圖(16) / 表(1)
計量
  • 文章訪問數:  457
  • HTML全文瀏覽量:  254
  • PDF下載量:  53
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-04-14
  • 網絡出版日期:  2021-08-20
  • 刊出日期:  2022-12-01

目錄

    /

    返回文章
    返回