<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于DIC的含3D打印起伏節理試樣破裂特性及損傷本構

王本鑫 金愛兵 趙怡晴 孫浩 劉加柱

王本鑫, 金愛兵, 趙怡晴, 孫浩, 劉加柱. 基于DIC的含3D打印起伏節理試樣破裂特性及損傷本構[J]. 工程科學學報, 2022, 44(12): 2029-2039. doi: 10.13374/j.issn2095-9389.2021.04.11.001
引用本文: 王本鑫, 金愛兵, 趙怡晴, 孫浩, 劉加柱. 基于DIC的含3D打印起伏節理試樣破裂特性及損傷本構[J]. 工程科學學報, 2022, 44(12): 2029-2039. doi: 10.13374/j.issn2095-9389.2021.04.11.001
WANG Ben-xin, JIN Ai-bing, ZHAO Yi-qing, SUN Hao, LIU Jia-zhu. Fracture characteristics and the damage constitutive model of 3D printing undulating joint samples based on DIC[J]. Chinese Journal of Engineering, 2022, 44(12): 2029-2039. doi: 10.13374/j.issn2095-9389.2021.04.11.001
Citation: WANG Ben-xin, JIN Ai-bing, ZHAO Yi-qing, SUN Hao, LIU Jia-zhu. Fracture characteristics and the damage constitutive model of 3D printing undulating joint samples based on DIC[J]. Chinese Journal of Engineering, 2022, 44(12): 2029-2039. doi: 10.13374/j.issn2095-9389.2021.04.11.001

基于DIC的含3D打印起伏節理試樣破裂特性及損傷本構

doi: 10.13374/j.issn2095-9389.2021.04.11.001
基金項目: 國家自然科學基金資助項目(52004017,52174106);中國博士后科學基金資助項目(2020M670138);中央高校基本科研業務費專項資金資助項目(FRF-TP-19-026A1)
詳細信息
    通訊作者:

    E-mail: yiqingzhao@126.com

  • 中圖分類號: TU45.1

Fracture characteristics and the damage constitutive model of 3D printing undulating joint samples based on DIC

More Information
  • 摘要: 受地質構造的影響,巖體工程中經常賦存起伏結構面(如扭轉皺褶),由于形態復雜,目前起伏節理巖體的破裂及損傷本構研究仍不充分. 采用3D打印技術制作不同傾角的起伏節理模型,通過單軸壓縮試驗和數字圖像相關技術(DIC)對起伏節理試樣的力學及破裂特性進行研究,并基于斷裂力學原理,首次提出采用DIC位移場求解節理尖端應力強度因子(SIF:一型SIF,KI;二型SIF,KII)進而探究損傷本構特性的思路. 結果表明:通過分析最小強度確定了起伏節理對試樣的損傷上限為46.6%,起伏節理試樣單軸強度對傾角的敏感性大于平直節理試樣;起裂發生在峰值應力附近,破裂過程可分為破裂路徑上微裂隙的產生和同步貫通,破裂模式表現為多條裂隙張剪組合模式;峰前SIF隨荷載增加而增加,峰后同一荷載下KII>KI,節理左右兩端均勻以剪切裂隙形式擴展;起伏節理對試樣的損傷與傾角呈正弦關系,節理和荷載對試樣的總損傷與應變均大致呈“S”型曲線.

     

  • 圖  1  含3D打印起伏節理試樣制作流程示意圖

    Figure  1.  Schematic diagram of the production process of specimens with 3D printing of undulating joints

    圖  2  起伏節理試件幾何參數示意圖

    Figure  2.  Schematic diagram of geometric parameters of an undulating joint specimen

    圖  3  單軸壓縮測試系統示意圖

    Figure  3.  Schematic diagram of a uniaxial compressive test system

    圖  4  試樣的應力?應變曲線

    Figure  4.  Stress?strain curves of joint specimens

    圖  5  不同傾角起伏節理和平直節理試樣的單軸強度對比

    Figure  5.  Comparison of the uniaxial strength of undulating and straight joints specimen with various dip angles

    圖  6  不同傾角起伏節理試樣的ε1主應變云圖

    Figure  6.  ε1 principal strain nephogram of undulating joint specimens with various dip angles

    圖  7  試樣的破裂模式. (a)起伏節理試樣;(b)平直節理試樣

    Figure  7.  Fracture modes of: (a) undulating joint specimens; (b) straight joint specimens

    圖  8  α=45°起伏節理試樣破裂隨應力?應變的演化過程

    Figure  8.  Fracture evolution in an undulating joint specimen with stress?strain at α = 45°

    圖  9  節理尖端極坐標示意圖

    Figure  9.  Polar coordinate diagram of a joint tip

    圖  10  應力峰值和峰后破裂時各試樣的SIF

    Figure  10.  SIF in specimens at peak stress and postpeak stress

    圖  11  α=30°試樣應力、節理兩端SIF和水平位移場隨時間的變化

    Figure  11.  Variation of stress, SIF at both ends of joints and horizontal displacement field with time in a specimen with α = 30°

    圖  12  不同傾角條件下節理尖端SIFP/σmaxα的擬合關系

    Figure  12.  Fitting relationship between SIFP/σmax of joint tips and α in various deformation stages

    圖  13  節理損傷Dj隨節理傾角α的變化

    Figure  13.  Change in joint damage Dj with joint dip angle α

    圖  14  不同傾角條件下總損傷Djs演化曲線

    Figure  14.  Evolution curves of total damage Djs under various dip angles

    圖  15  不同傾角條件下試樣的應力?應變關系

    Figure  15.  Stress?strain relationship under various dip angles

    表  1  不同變形階段節理尖端SIF

    Table  1.   SIF of joint tips at various deformation stages

    SIF/(MPa·m0.5)Deformation stagesJoint angle, α/(°)
    030456090
    KI_lCompaction0.260.230.350.380.30
    Elasticity0.270.350.510.770.45
    Yield0.360.350.701.000.52
    Peak0.520.430.911.100.58
    Post peak0.320.571.251.530.64
    KII_lCompaction0.350.260.310.420.34
    Elasticity0.370.410.710.830.53
    Yield0.430.410.831.100.62
    Peak0.410.490.851.180.69
    Post peak0.360.661.341.620.77
    KI_rCompaction0.100.060.030.040.07
    Elasticity0.110.090.060.090.10
    Yield0.130.100.070.110.11
    Peak0.120.100.080.120.13
    Post peak0.110.140.160.160.12
    KII_rCompaction1.360.220.090.110.24
    Elasticity1.420.320.160.210.33
    Yield1.740.320.180.260.37
    Peak1.560.370.190.280.42
    Post peak1.480.520.210.350.40
    下載: 導出CSV

    表  2  擬合曲線對應公式系數

    Table  2.   Corresponding formula coefficient of a fitting curve

    SIFP/σmaxa0a1b1w
    KI_r/σmax?0.029060.034210.35660.007055
    KII_r/σmax6.444?6.3740.8606?0.1331
    KI_l/σmax0.03958?0.02441?0.018343.365
    KII_l/σmax0.04643?0.02781?0.017123.31
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Usefzadeh A, Yousefzadeh H, Salari-Rad H, et al. Empirical and mathematical formulation of the shear behavior of rock joints. Eng Geol, 2013, 164: 243 doi: 10.1016/j.enggeo.2013.07.013
    [2] Jin A B, Sun H, Meng X Q, et al. Equivalent strength and failure behavior of intermittent jointed rock mass. J Central South Univ (Sci Technol), 2016, 47(9): 3169 doi: 10.11817/j.issn.1672-7207.2016.09.035

    金愛兵, 孫浩, 孟新秋, 等. 非貫通節理巖體等效強度及破壞特性. 中南大學學報(自然科學版), 2016, 47(9):3169 doi: 10.11817/j.issn.1672-7207.2016.09.035
    [3] Bao H, Xu X H, Lan H X, et al. A new joint morphology parameter considering the effects of micro-slope distribution of joint surface. Eng Geol, 2020, 275: 105734 doi: 10.1016/j.enggeo.2020.105734
    [4] He C L, Tang H T, Tian H Y, et al. Progress in the development of biomedical polymer materials fabricated by 3-dimensional printing technology. Acta Polym Sin, 2013(6): 722

    賀超良, 湯朝暉, 田華雨, 等. 3D打印技術制備生物醫用高分子材料的研究進展. 高分子學報, 2013(6):722
    [5] Shi Y S, Yan C Z, Wei Q S, et al. Polymer based composites for selective laser sintering 3D printing technology. Sci Sin Informationis, 2015, 45(2): 204 doi: 10.1360/N112014-00222

    史玉升, 閆春澤, 魏青松, 等. 選擇性激光燒結3D打印用高分子復合材料. 中國科學:信息科學, 2015, 45(2):204 doi: 10.1360/N112014-00222
    [6] Zhang X J, Tang S Y, Zhao H Y, et al. Research status and key technologies of 3D printing. J Mater Eng, 2016, 44(2): 122 doi: 10.11868/j.issn.1001-4381.2016.02.019

    張學軍, 唐思熠, 肇恒躍, 等. 3D打印技術研究現狀和關鍵技術. 材料工程, 2016, 44(2):122 doi: 10.11868/j.issn.1001-4381.2016.02.019
    [7] Wang B X, Jin A B, Zhao Y Q, et al. Fracture law of 3D printing specimen with non-consecutive joints based on CT scanning. Rock Soil Mech, 2019, 40(10): 3920

    王本鑫, 金愛兵, 趙怡晴, 等. 基于CT掃描的含非貫通節理3D打印試件破裂規律試驗研究. 巖土力學, 2019, 40(10):3920
    [8] Wang B X, Jin A B, Wang S L, et al. Mechanical characteristics and fracture mechanism of 3D printed rock samples with cross joints. Rock Soil Mech, 2021, 42(1): 39

    王本鑫, 金愛兵, 王樹亮, 等. 3D打印交叉節理試件力學破裂特性研究. 巖土力學, 2021, 42(1):39
    [9] Jiang Q, Song L B. Study on application of 3D printing technology for physical modeling in rock mechanics and outlook. Chin J Rock Mech Eng, 2018, 37(1): 23

    江權, 宋磊博. 3D打印技術在巖體物理模型力學試驗研究中的應用研究與展望. 巖石力學與工程學報, 2018, 37(1):23
    [10] Wang S, Yu Q, Wang L. Effect of fracture roughness on permeability coefficient under uniaxial compression. Chin J Eng, 2021, 43(7): 915

    王帥, 于慶磊, 王玲. 單軸壓縮條件下裂隙粗糙度對滲透系數的影響. 工程科學學報, 2021, 43(7):915
    [11] Jiang Q, Song L B, Yan F, et al. Experimental investigation of anisotropic wear damage for natural joints under direct shearing test. Int J Geomech, 2020, 20(4): 04020015 doi: 10.1061/(ASCE)GM.1943-5622.0001617
    [12] Feng X W, Xue F, Wang T Z, et al. Reinforcing effects of 3D printed bolts on joint-separated standard soft rock specimens. Compos B:Eng, 2020, 193: 108024 doi: 10.1016/j.compositesb.2020.108024
    [13] Wang P T, Huang Z J, Ren F H, et al. Investigation of direct shear behavior and fracture patterns of 3D-printed complex jointed rock models. Rock Soil Mech, 2020, 41(1): 46

    王培濤, 黃正均, 任奮華, 等. 基于3D打印的含復雜節理巖石直剪特性及破壞機制研究. 巖土力學, 2020, 41(1):46
    [14] Jin A B, Wang S L, Wang B X, et al. Study on the fracture mechanism of 3D-printed-joint specimens based on DIC technology. Rock Soil Mech, 2020, 41(10): 3214

    金愛兵, 王樹亮, 王本鑫, 等. 基于DIC技術的3D打印節理試件破裂機制研究. 巖土力學, 2020, 41(10):3214
    [15] Jin A B, Wang S L, Wang B X, et al. Fracture mechanism of specimens with 3D printing cross joint based on DIC technology. Rock Soil Mech, 2020, 41(12): 3862

    金愛兵, 王樹亮, 王本鑫, 等. 基于DIC的3D打印交叉節理試件破裂機制研究. 巖土力學, 2020, 41(12):3862
    [16] Liu H Y, Lü S R, Zhang L M. Dynamic damage constitutive model for persistent jointed rock mass based on combination model method. Chin J Geotech Eng, 2014, 36(10): 1814 doi: 10.11779/CJGE201410008

    劉紅巖, 呂淑然, 張力民. 基于組合模型法的貫通節理巖體動態損傷本構模型. 巖土工程學報, 2014, 36(10):1814 doi: 10.11779/CJGE201410008
    [17] Liu H Y, Li J F, Pei X L. A dynamic damage constitutive model for rockmass with intermittent joints under uniaxial compression. Explos Shock Waves, 2018, 38(2): 316 doi: 10.11883/bzycj-2016-0261

    劉紅巖, 李俊峰, 裴小龍. 單軸壓縮下斷續節理巖體動態損傷本構模型. 爆炸與沖擊, 2018, 38(2):316 doi: 10.11883/bzycj-2016-0261
    [18] Hu Y Y, Wang C. Nonlinear coupling damage constitutive model for multi-jointed rock mass. J China Coal Soc, 2019, 44(Suppl 1): 52

    胡亞元, 王超. 多節理巖體的非線性耦合損傷本構模型. 煤炭學報, 2019, 44(增刊1): 52
    [19] Wang J, Li Y, Song W D, et al. Analysis of damage evolution characteristics of jointed rock mass with different joint dip angles. J Harbin Inst Technol, 2019, 51(8): 143 doi: 10.11918/j.issn.0367-6234.201805091

    汪杰, 李楊, 宋衛東, 等. 不同傾角節理巖體損傷演化特征分析. 哈爾濱工業大學學報, 2019, 51(8):143 doi: 10.11918/j.issn.0367-6234.201805091
    [20] Dai S H, Ma S L, Pan Y S, et al. Evaluation of mode i stress intensity factor of rock utilizing digital speckle correlation method. Chin J Rock Mech Eng, 2012, 31(12): 2501 doi: 10.3969/j.issn.1000-6915.2012.12.014

    代樹紅, 馬勝利, 潘一山, 等. 數字散斑相關方法測定巖石Ⅰ型應力強度因子. 巖石力學與工程學報, 2012, 31(12):2501 doi: 10.3969/j.issn.1000-6915.2012.12.014
    [21] Song Y M, Xing T Z, Lü X F, et al. Fracture characteristics of granite with mode-I pre-crack at different loading rates. Rock Soil Mech, 2018, 39(12): 4369

    宋義敏, 邢同振, 呂祥鋒, 等. 不同加載速率Ⅰ型預制裂紋花崗巖斷裂特征研究. 巖土力學, 2018, 39(12):4369
    [22] Zhang R, He L F. Evaluating stress intensity factor of polycarbonate using digital image correlation. Eng Mech, 2012, 29(12): 22 doi: 10.6052/j.issn.1000-4750.2011.04.0250

    張蕊, 賀玲鳳. 數字圖像相關法測量聚碳酸酯板應力強度因子. 工程力學, 2012, 29(12):22 doi: 10.6052/j.issn.1000-4750.2011.04.0250
    [23] Wang Q Z, Xia K W, Wu B B, et al. Dynamic failure of simulated rock mass plate containing two parallel cracks. J Tianjin Univ (Sci Technol), 2019, 52(10): 1099

    王奇智, 夏開文, 吳幫標, 等. 預制平行雙節理類巖石材料板動態破壞試驗研究. 天津大學學報(自然科學與工程技術版), 2019, 52(10):1099
    [24] Zheng A X, Luo X Q. Research on combined fracture criterion of rock under compression-shear stress. Rock Soil Mech, 2015, 36(7): 1892

    鄭安興, 羅先啟. 壓剪應力狀態下巖石復合型斷裂判據的研究. 巖土力學, 2015, 36(7):1892
    [25] Ning J G, Zhu Z W. Constitutive model of frozen soil with damage and numerical simulation of the coupled problem. Chin Joumal Theor Appl Mech, 2007, 39(1): 70 doi: 10.3321/j.issn:0459-1879.2007.01.009

    寧建國, 朱志武. 含損傷的凍土本構模型及耦合問題數值分析. 力學學報, 2007, 39(1):70 doi: 10.3321/j.issn:0459-1879.2007.01.009
    [26] Zhang H M, Yang G S. Research on damage model of rock under coupling action of freeze-thaw and load. Chin J Rock Mech Eng, 2010, 29(3): 471

    張慧梅, 楊更社. 凍融與荷載耦合作用下巖石損傷模型的研究. 巖石力學與工程學報, 2010, 29(3):471
    [27] Yuan X Q, Liu H Y, Liu J P. Constitutive model of rock mass with non-persistent joints based on coupling macroscopic and mesoscopic damages. Rock Soil Mech, 2015, 36(10): 2804

    袁小清, 劉紅巖, 劉京平. 基于宏細觀損傷耦合的非貫通裂隙巖體本構模型. 巖土力學, 2015, 36(10):2804
    [28] Yi S M, Zhu Z D. Introduction to Damage Mechanics of Fractured Rock Mass. Beijing: Science Press, 2005

    易順民, 朱珍德. 裂隙巖體損傷力學導論. 北京: 科學出版社, 2005
    [29] Zhu W S, Zhang Q Y. Brittle elastic fracture damage constitutive model of jointed rockmass and its application to engineering. Chin J Rock Mech Eng, 1999, 18(3): 245 doi: 10.3321/j.issn:1000-6915.1999.03.001

    朱維申, 張強勇. 節理巖體脆彈性斷裂損傷模型及其工程應用. 巖石力學與工程學報, 1999, 18(3):245 doi: 10.3321/j.issn:1000-6915.1999.03.001
    [30] Wang J, Song W D, Fu J X. A damage constitutive model and strength criterion of rock mass considering the dip angle of joints. Chin J Rock Mech Eng, 2018, 37(10): 2253

    汪杰, 宋衛東, 付建新. 考慮節理傾角的巖體損傷本構模型及強度準則. 巖石力學與工程學報, 2018, 37(10):2253
    [31] Zhang H M, Peng C, Yang G S, et al. Study of damage statistical strength criterion of rock considering the effect of freezing and thawing. J China Univ Min Technol, 2017, 46(5): 1066

    張慧梅, 彭川, 楊更社, 等. 考慮凍融效應的巖石損傷統計強度準則研究. 中國礦業大學學報, 2017, 46(5):1066
  • 加載中
圖(15) / 表(2)
計量
  • 文章訪問數:  593
  • HTML全文瀏覽量:  175
  • PDF下載量:  55
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-04-11
  • 網絡出版日期:  2021-05-31
  • 刊出日期:  2022-12-01

目錄

    /

    返回文章
    返回