<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

深部地下硐室與應力場軸變關系及其圍巖損傷破裂分析

劉力源 張樂 紀洪廣

劉力源, 張樂, 紀洪廣. 深部地下硐室與應力場軸變關系及其圍巖損傷破裂分析[J]. 工程科學學報, 2022, 44(4): 516-525. doi: 10.13374/j.issn2095-9389.2021.04.09.003
引用本文: 劉力源, 張樂, 紀洪廣. 深部地下硐室與應力場軸變關系及其圍巖損傷破裂分析[J]. 工程科學學報, 2022, 44(4): 516-525. doi: 10.13374/j.issn2095-9389.2021.04.09.003
LIU Li-yuan, ZHANG Le, JI Hong-guang. Mechanism analysis of rock damage and failure based on the relation between deep chamber axial variation and in situ stress fields[J]. Chinese Journal of Engineering, 2022, 44(4): 516-525. doi: 10.13374/j.issn2095-9389.2021.04.09.003
Citation: LIU Li-yuan, ZHANG Le, JI Hong-guang. Mechanism analysis of rock damage and failure based on the relation between deep chamber axial variation and in situ stress fields[J]. Chinese Journal of Engineering, 2022, 44(4): 516-525. doi: 10.13374/j.issn2095-9389.2021.04.09.003

深部地下硐室與應力場軸變關系及其圍巖損傷破裂分析

doi: 10.13374/j.issn2095-9389.2021.04.09.003
基金項目: 博士后創新人才支持計劃資助項目(BX2021033);國家重點研發計劃資助項目(2016YFC0600801);國家自然科學基金資助項目(52004015);北京市自然科學基金資助項目(2204084);中央高校基本科研業務費資助項目(FRF-TP-19-027A1,FRF-IDRY-20-003)
詳細信息
    通訊作者:

    E-mail: jihongguang@ces.ustb.edu.cn

  • 中圖分類號: TD315

Mechanism analysis of rock damage and failure based on the relation between deep chamber axial variation and in situ stress fields

More Information
  • 摘要: 針對深部地下硐室與地應力場之間的軸變關系及其對硐室圍巖損傷破裂的影響,建立了非均質圍巖統計損傷力學模型;分析了不同斷面形狀、地層側壓系數、構造應力場對硐室圍巖損傷破裂的作用機制和影響規律,定義了地層臨界側壓系數;開展了三山島金礦西嶺礦區埋深2000 m地層硐室損傷破裂數值模擬,得到了該礦區深部地下硐室設計與布置原則。研究結果表明,“等應力軸比”情況下硐室圍巖應力集中程度最小,損傷破裂區面積最小;地應力場是圍巖損傷破裂的根本原因,側壓系數越大,硐室頂、底板處應力峰值越大,圍巖以拉伸破裂為主,圍巖損傷破裂區面積隨側壓系數增大呈指數性增大;隨著地層深度的增加,硐室臨界側壓系數不斷減小并趨近于1,深部地下硐室對水平構造應力更加敏感;構造應力場誘使圍巖損傷破裂程度增大,損傷破裂區向構造應力場圍巖應力集中區轉移,使得硐室圍巖發生冒頂和巖爆風險升高。因此,深部地下硐室的設計與布置應結合實際地應力條件,硐室軸向、斷面形狀、軸比盡可能符合地應力條件,從而最大程度降低地應力場對硐室圍巖損傷破裂及穩定性的不利影響。

     

  • 圖  1  不同地應力場作用下橢圓形硐室應力計算簡圖

    Figure  1.  Stress calculation diagram of an oval chamber under various in situ stress fields

    圖  2  等應力軸比硐室應力集中系數變化

    Figure  2.  Stress concentration factor for a chamber where the axial ratio equals the stress ratio

    圖  3  硐室開挖數值模型

    Figure  3.  Numerical model for chamber excavation

    圖  4  硐室斷面軸比對圍巖損傷破裂影響。(a)Z=1/2;(b)Z=2/3;(c)Z=1;(d)Z=3/2;(e)Z=2

    Figure  4.  Effect of the chamber axial ratio on the damage of country rock: (a) Z=1/2; (b) Z=2/3; (c) Z=1; (d) Z=3/2; (e) Z=2

    圖  5  硐室斷面軸比對圍巖彈性模量的影響。(a)Z=1/2;(b)Z=2/3;(c)Z=1;(d)Z=3/2;(e)Z=2

    Figure  5.  Effect of the chamber axial ratio on the elastic modulus of country rock: (a) Z=1/2; (b) Z= 2/3; (c) Z=1; (d) Z=3/2; (e) Z=2

    圖  6  不同軸比硐室X方向應力分布情況。(a)拱頂處;(b)水平中線處

    Figure  6.  Stress distribution in the X direction of the chamber with various axial ratios: (a) chamber roof; (b) middle route of the chamber

    圖  7  圍巖損傷破裂區與硐室軸比條件關系

    Figure  7.  Relationship between the damaged zone and chamber axial ratio

    圖  8  硐室斷面形狀對圍巖損傷破裂影響。(a)橢圓形;(b)矩形;(c)圓形;(d)馬蹄形;(e)正方形

    Figure  8.  Effect of the chamber shape on the extent of damage of country rock: (a) ellipse; (b) rectangle; (c) circle; (d) horseshoe; (e) square

    圖  9  硐室斷面形狀對圍巖彈性模量影響。(a)橢圓形;(b)矩形;(c)圓形;(d)馬蹄形;(e)正方形

    Figure  9.  Effect of the chamber shape on the elastic modulus of country rock: (a) ellipse; (b) rectangle; (c) circle; (d) horseshoe; (e) square

    圖  10  不同形狀硐室X方向應力分布情況。(a)拱頂處;(b)水平中線處

    Figure  10.  Stress distribution in the X direction of a chamber with various shapes: (a) chamber roof; (b) middle route of the chamber

    圖  11  圍巖損傷破裂區與硐室形狀條件關系

    Figure  11.  Relationship between the damaged zone and chamber shape

    圖  12  側壓系數對圍巖損傷破裂影響。(a)λ=1;(b)λ=1.5;(c)λ=1.75;(d)λ=2;(e)λ=2.2

    Figure  12.  Effect of the lateral pressure coefficient on the damage of country rock: (a) λ=1; (b) λ=1.5; (c) λ=1.75; (d) λ=2; (e) λ=2.2

    圖  13  側壓系數對圍巖彈性模量影響。(a)λ=1;(b)λ=1.5;(c)λ=1.75;(d)λ=2;(e)λ=2.2

    Figure  13.  Effect of the lateral pressure coefficient on the elastic modulus of country rock: (a) λ=1; (b) λ=1.5;(c) λ=1.75; (d) λ=2; (e) λ=2.2

    圖  14  不同側壓系數硐室X方向應力分布情況。(a)拱頂處;(b)水平中線處

    Figure  14.  Stress distribution in the X direction of a chamber with various lateral pressure coefficients: (a) chamber roof; (b) middle route of the chamber

    圖  15  圍巖損傷破裂區面積與地應力側壓系數條件關系

    Figure  15.  Relationship between the damaged zone and in situ stress lateral pressure coefficient

    圖  16  不同地應力條件下對應的臨界側壓系數

    Figure  16.  Critical lateral pressure coefficient under various in situ stress conditions

    圖  17  構造應力角對圍巖損傷破裂影響。(a)β=0°;(b)β=15°;(c)β=30°;(d)β=45°;(e)β=60°

    Figure  17.  Effect of the tectonic stress dip on the damage of country rock: (a) β=0°; (b) β=15°; (c) β=30°; (d) β=45°; (e) β=60°

    圖  18  構造應力角對圍巖彈性模量影響。(a)β=0°;(b)β=15°;(c)β=30°;(d)β=45°;(e)β=60°

    Figure  18.  Effect of the tectonic stress dip on the elastic modulus of country rock: (a) β=0°;(b) β=15°;(c) β=30°;(d) β=45°;(e) β=60°

    圖  19  不同構造應力角硐室X方向應力分布情況. (a)拱頂處;(b)水平中線處

    Figure  19.  Stress distribution in the X direction of a chamber with different tectonic stress dips: (a) chamber roof; (b) middle route of the chamber

    圖  20  圍巖損傷破裂區面積與構造應力角度關系

    Figure  20.  Relationship between the damaged zone area and tectonic stress dip

    圖  21  三山島金礦設計巷道圍巖損傷破裂。(a)圓形;(b)三心拱形

    Figure  21.  Damage to a roadway in the Sanshandao gold mine: (a) circle; (b) three-centered arch

    圖  22  三山島金礦設計巷道圍巖彈性模量。(a)圓形;(b)三心拱形

    Figure  22.  Elastic modulus of the roadway in the Sanshandao gold mine: (a) circle; (b) three-centered arch

    圖  23  三山島金礦設計巷道Mises應力分布情況。(a)圓形;(b)三心拱形

    Figure  23.  The von mises stress distribution in a roadway in the Sanshandao gold mine: (a) circle; (b) three-centered arch

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Feng X T, Liu J P, Chen B R, et al. Monitoring, warning, and control of rockburst in deep metal mines. Engineering, 2017, 3(4): 538 doi: 10.1016/J.ENG.2017.04.013
    [2] Cai M F, Brown E T. Challenges in the mining and utilization of deep mineral resources. Engineering, 2017, 3(4): 432 doi: 10.1016/J.ENG.2017.04.027
    [3] Xie H P. Research review of the state key research development program of China: Deep rock mechanics and mining theory. J China Coal Soc, 2019, 44(5): 1283

    謝和平. 深部巖體力學與開采理論研究進展. 煤炭學報, 2019, 44(5):1283
    [4] He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803 doi: 10.3321/j.issn:1000-6915.2005.16.001

    何滿潮, 謝和平, 彭蘇萍, 等. 深部開采巖體力學研究. 巖石力學與工程學報, 2005, 24(16):2803 doi: 10.3321/j.issn:1000-6915.2005.16.001
    [5] Liu L Y, Ji H G, Lü X F, et al. Mitigation of greenhouse gases released from mining activities: A review. Int J Miner Metall Mater, 2021, 28(4): 513 doi: 10.1007/s12613-020-2155-4
    [6] Li X B, Gong F Q, Tao M, et al. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review. J Rock Mech Geotech Eng, 2017, 9(4): 767 doi: 10.1016/j.jrmge.2017.04.004
    [7] Gong Q M, Yin L J, Wu S Y, et al. Rock burst and slabbing failure and its influence on TBM excavation at headrace tunnels in Jinping II hydropower station. Eng Geol, 2012, 124: 98 doi: 10.1016/j.enggeo.2011.10.007
    [8] Li C H, Bu L, Wei X M, et al. Current status and future trends of deep mining safety mechanism and disaster prevention and control. Chin J Eng, 2017, 39(8): 1129

    李長洪, 卜磊, 魏曉明, 等. 深部開采安全機理及災害防控現狀與態勢分析. 工程科學學報, 2017, 39(8):1129
    [9] Martin C D, Christiansson R. Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock. Int J Rock Mech Min Sci, 2009, 46(2): 219 doi: 10.1016/j.ijrmms.2008.03.001
    [10] Liu L Y, Ji H G, Wang T, et al. Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress. Chin J Eng, 2020, 42(6): 715

    劉力源, 紀洪廣, 王濤, 等. 高滲透壓和不對稱圍壓作用下深豎井圍巖損傷破裂機理. 工程科學學報, 2020, 42(6):715
    [11] Yang R S, Zhu Y L, Wu B Y, et al. Numerical analysis and optimization design of large angle soft thick coal seam roadway. China Min Mag, 2010, 19(9): 73 doi: 10.3969/j.issn.1004-4051.2010.09.021

    楊仁樹, 朱衍利, 吳寶楊, 等. 大傾角松軟厚煤層巷道優化設計及數值分析. 中國礦業, 2010, 19(9):73 doi: 10.3969/j.issn.1004-4051.2010.09.021
    [12] Chen J, Lu D, Liu W, et al. Stability study and optimization design of small-spacing two-well (SSTW) salt Caverns for natural gas storages. J Energy Storage, 2020, 27: 101131 doi: 10.1016/j.est.2019.101131
    [13] Mobaraki B, Vaghefi M. Numerical study of the depth and cross-sectional shape of tunnel under surface explosion. Tunn Undergr Space Technol, 2015, 47: 114 doi: 10.1016/j.tust.2015.01.003
    [14] Galli G, Grimaldi A, Leonardi A. Three-dimensional modelling of tunnel excavation and lining. Comput Geotech, 2004, 31(3): 171 doi: 10.1016/j.compgeo.2004.02.003
    [15] Meng Q B, Han L J, Qiao W G, et al. Numerical simulation of cross-section shape optimization design of deep soft rock roadway under high stress. J Min Saf Eng, 2012, 29(5): 650

    孟慶彬, 韓立軍, 喬衛國, 等. 深部高應力軟巖巷道斷面形狀優化設計數值模擬研究. 采礦與安全工程學報, 2012, 29(5):650
    [16] Yu X F, Qiao D. Theory of axial variation and three rules of axial ratio for stabilizing country rock. Nonferrous Met, 1981(3): 8

    于學馥, 喬端. 軸變論和圍巖穩定軸比三規律. 有色金屬, 1981(3):8
    [17] Yu X F. On the theory of axial variation and basic rules of deformation and fracture of rocks surrounding underground excavations. Uranium Min Metall, 1982, 1(1): 8

    于學馥. 軸變論與圍巖變形破壞的基本規律. 鈾礦冶, 1982, 1(1):8
    [18] Li S J, Feng X T, Li Z H, et al. Evolution of fractures in the excavation damaged zone of a deeply buried tunnel during TBM construction. Int J Rock Mech Min Sci, 2012, 55: 125 doi: 10.1016/j.ijrmms.2012.07.004
    [19] Falls S D, Young R P. Acoustic emission and ultrasonic-velocity methods used to characterise the excavation disturbance associated with deep tunnels in hard rock. Tectonophysics, 1998, 289(1-3): 1 doi: 10.1016/S0040-1951(97)00303-X
    [20] Hakami H. Rock characterisation facility (RCF) shaft sinking—numerical computations using FLAC. Int J Rock Mech Min Sci, 2001, 38(1): 59 doi: 10.1016/S1365-1609(00)00064-2
    [21] Read R S, Chandler N A, Dzik E J. In situ strength criteria for tunnel design in highly-stressed rock masses. Int J Rock Mech Min Sci, 1998, 35(3): 261 doi: 10.1016/S0148-9062(97)00302-1
    [22] Chang S H, Lee C I, Lee Y K. An experimental damage model and its application to the evaluation of the excavation damage zone. Rock Mech Rock Eng, 2007, 40(3): 245 doi: 10.1007/s00603-006-0113-8
    [23] Zhang X B, Zhao G M, Meng X R, et al. Analysis on surrounding rock of circular roadway considering nonlinear brittle damage and intermediate principal stress. J China Coal Soc, 2014, 39(Suppl 2): 339

    張小波, 趙光明, 孟祥瑞, 等. 考慮非線性脆性損傷和中間主應力影響的圓形巷道圍巖分析. 煤炭學報, 2014, 39(增刊2): 339
    [24] Cai D S, Zhang J C, Liu H W. Numerical simulation and application of blasting damage of bed rock mass. J Hydraul Eng, 1997, 28(4): 68

    蔡德所, 張繼春, 劉浩吾. 基巖爆破損傷的數值模擬及其工程應用. 水利學報, 1997, 28(4):68
    [25] Yang D, Li H B, Xia X, et al. Study of dynamic damage of surrounding rocks for tunnels under high in situ stress. Rock Soil Mech, 2013, 34(Suppl 2): 311

    楊棟, 李海波, 夏祥, 等. 高地應力下隧道圍巖動力損傷分析. 巖土力學, 2013, 34(增刊2): 311
    [26] Liu L Y, Ji H G, Elsworth D, et al. Dual-damage constitutive model to define thermal damage in rock. Int J Rock Mech Min Sci, 2020, 126: 104185 doi: 10.1016/j.ijrmms.2019.104185
    [27] Liu L Y, Zhu W C, Wei C H, et al. Microcrack-based geomechanical modeling of rock-gas interaction during supercritical CO2 fracturing. J Petroleum Sci Eng, 2018, 164: 91 doi: 10.1016/j.petrol.2018.01.049
    [28] Liu L Y, Li L C, Elsworth D, et al. The impact of oriented perforations on fracture propagation and complexity in hydraulic fracturing. Processes, 2018, 6(11): 213 doi: 10.3390/pr6110213
    [29] Zhu W C, Liu L Y, Liu J S, et al. Impact of gas adsorption-induced coal damage on the evolution of coal permeability. Int J Rock Mech Min Sci, 2018, 101: 89 doi: 10.1016/j.ijrmms.2017.11.007
    [30] He M C, Lu X J, Jing H H. Characters of surrounding rockmass in deep engineering and its non-linear dynamic-mechanical design concept. Chin J Rock Mech Eng, 2002, 21(8): 1215 doi: 10.3321/j.issn:1000-6915.2002.08.022

    何滿潮, 呂曉儉, 景海河. 深部工程圍巖特性及非線性動態力學設計理念. 巖石力學與工程學報, 2002, 21(8):1215 doi: 10.3321/j.issn:1000-6915.2002.08.022
    [31] Lu Y, Zou X Z, Liu C Y, et al. Roadway layout in tectonic stress field. J Min Saf Eng, 2008, 25(2): 144 doi: 10.3969/j.issn.1673-3363.2008.02.004

    魯巖, 鄒喜正, 劉長友, 等. 構造應力場中的巷道布置. 采礦與安全工程學報, 2008, 25(2):144 doi: 10.3969/j.issn.1673-3363.2008.02.004
    [32] Li G C, Zhang N, Wang C, et al. Optimizing the section shape of roadways in high stress ground by numerical simulation. J China Univ Min Technol, 2010, 39(5): 652

    李桂臣, 張農, 王成, 等. 高地應力巷道斷面形狀優化數值模擬研究. 中國礦業大學學報, 2010, 39(5):652
    [33] Jiang Y D, Liu W G, Zhao Y X, et al. Study on surrounding rock stability of deep mining in Kailuan mining group. Chin J Rock Mech Eng, 2005, 24(11): 1857 doi: 10.3321/j.issn:1000-6915.2005.11.007

    姜耀東, 劉文崗, 趙毅鑫, 等. 開灤礦區深部開采中巷道圍巖穩定性研究. 巖石力學與工程學報, 2005, 24(11):1857 doi: 10.3321/j.issn:1000-6915.2005.11.007
    [34] Kang H P, Yi B D, Gao F Q, et al. Database and characteristics of underground in-situ stress distribution in Chinese coal mines. J China Coal Soc, 2019, 44(1): 23

    康紅普, 伊丙鼎, 高富強, 等. 中國煤礦井下地應力數據庫及地應力分布規律. 煤炭學報, 2019, 44(1):23
    [35] Wang C W, Jiang F X, Liu J H. Analysis on control action of geologic structure on rock burst and typical cases. J China Coal Soc, 2012, 37(Suppl 2): 263

    王存文, 姜福興, 劉金海. 構造對沖擊地壓的控制作用及案例分析. 煤炭學報, 2012, 37(增刊2): 263
  • 加載中
圖(23)
計量
  • 文章訪問數:  910
  • HTML全文瀏覽量:  345
  • PDF下載量:  95
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-04-09
  • 網絡出版日期:  2021-06-15
  • 刊出日期:  2022-04-02

目錄

    /

    返回文章
    返回