<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

重毒性鉛污染土壤清潔高效修復研究進展

肖龍恒 唐續龍 盧光華 張穎 郭敏 張梅

肖龍恒, 唐續龍, 盧光華, 張穎, 郭敏, 張梅. 重毒性鉛污染土壤清潔高效修復研究進展[J]. 工程科學學報, 2022, 44(2): 289-304. doi: 10.13374/j.issn2095-9389.2021.04.08.002
引用本文: 肖龍恒, 唐續龍, 盧光華, 張穎, 郭敏, 張梅. 重毒性鉛污染土壤清潔高效修復研究進展[J]. 工程科學學報, 2022, 44(2): 289-304. doi: 10.13374/j.issn2095-9389.2021.04.08.002
XIAO Long-heng, TANG Xu-long, LU Guang-hua, ZHANG Ying, GUO Min, ZHANG Mei. Research progress in cleaning and efficient remediation of heavy, toxic, lead-contaminated soil[J]. Chinese Journal of Engineering, 2022, 44(2): 289-304. doi: 10.13374/j.issn2095-9389.2021.04.08.002
Citation: XIAO Long-heng, TANG Xu-long, LU Guang-hua, ZHANG Ying, GUO Min, ZHANG Mei. Research progress in cleaning and efficient remediation of heavy, toxic, lead-contaminated soil[J]. Chinese Journal of Engineering, 2022, 44(2): 289-304. doi: 10.13374/j.issn2095-9389.2021.04.08.002

重毒性鉛污染土壤清潔高效修復研究進展

doi: 10.13374/j.issn2095-9389.2021.04.08.002
詳細信息
    通訊作者:

    E-mail: zhangmei@ustb.edu.cn

  • 中圖分類號: X-1; X53

Research progress in cleaning and efficient remediation of heavy, toxic, lead-contaminated soil

More Information
  • 摘要: 在介紹了鉛元素污染背景、現狀與危害的基礎上,對土壤中鉛的來源、賦存形式及其提取方法進行了詳細介紹。結合土壤修復技術研究現狀,對三大修復方法如物理、化學及生物修復法進行了系統綜述,并從效率、適用性、經濟性等方面評估了3種修復方法的優勢與劣勢,發現化學修復最適合重毒性鉛污染治理。隨之對化學淋洗法和固定化/穩定法作了詳細介紹,探討并評價了不同種類淋洗劑和固化劑的修復機制、修復效果、適用性和應用前景等。最后對未來重毒性鉛污染土壤清潔高效修復提出了展望,修復方法應盡量減少對土壤的破壞;對高鉛污染土壤來說聯合修復技術的發展是土壤修復富有潛力的發展方向;應當盡可能地確定鉛污染土壤修復機制,實現定向修復;同時應加強多功能復合材料的研發。

     

  • 圖  1  Na2EDTA濃度對去除土壤中DTPA可提取鉛和鎘的影響[48]

    Figure  1.  Effect of concentration on the removal of DTPA-extractable lead and cadmium from the contaminated soil using Na2EDTA[48]

    圖  2  檸檬酸在土壤顆粒表面對重金屬的吸附[51]

    Figure  2.  Adsorption of heavy metals by citric acid on the soil particle surface[51]

    圖  3  HC12.5–180固定化土壤中Pb、Sb的主要機理[67]

    Figure  3.  Main mechanisms of Pb and Sb immobilization in soil by HC12.5–180[67]

    表  1  農用地土壤污染風險值

    Table  1.   Risk values for soil contamination of agricultural land

    Farmland soilSoil pHRisk values/(mg·kg?1)
    Screening valueIntervention value
    Paddy fieldpH≤5.580400
    5.5<pH≤6.5100500
    6.5<pH≤7.5140700
    pH>7.52401000
    ElsepH≤5.570
    5.5<pH≤6.590
    6.5<pH≤7.5120
    pH>7.5170
    下載: 導出CSV

    表  2  建設用地污染風險值

    Table  2.   Risk values for soil contamination of construction land

    Contaminant projectScreening value/
    (mg·kg?1)
    Intervention value/
    (mg·kg?1)
    Type I LandType II LandType I LandType II Land
    Lead4008008002500
    下載: 導出CSV

    表  3  BCR 提取法

    Table  3.   BCR extraction method

    StepOperational
    definition
    Chemical reagents and conditions
    Acid fractionTo a l g aliquot, add 40 mL of 0.11 mol·L?1 HOAc; shake for 16 h at 22 ℃; separate the extract from the solid residue by centrifugation at 3000 rad·min?1 for 20 min.
    Extractable reducible fractionTo Step 1 residue, add 40 mL of 0.5 mol·L?1 NH4OH·HCl from a l L solution containing 25 ml of 2 mol·L?1 HNO3 (pH=1.5); shake for 16 h at (22±5) ℃ centrifuge at 3000 rad·min?1 for 20 min.
    Oxidizable fractionTo Step 2 residue, add 10 mL of H2O2 (pH=2?3), digest at room temperature (22±5℃) for 1 h ; heat to 85±2 ℃ for 1 h; add another 10 mL of H2O2 and heat to 85±2℃ for 1 h; add 50 mL of 1 mol·L?1 NH4OAc (pH = 2) and shake for 16 h at (22±5) ℃ centrifuge at 3000 rad·min?1 for 20 min.
    Residual fractionTo Step 3 residue, add 3 mL of distilled H2O2, 7.5 mL of 6 mol·L?1 HCl, and 2.5 mL of 14 mol·L?1 HNO3; leave overnight at 20 ℃; boil under reflux for 2 h; cool and filter.
    下載: 導出CSV

    表  4  Tessier 順序提取法

    Table  4.   Tessier sequential extraction method

    Step Operational
    definition
    Chemical reagents and conditions
    Exchangeable fractionTo a l g aliquot, add 8 mL of 1 ol·L?1 MgCl2; oscillating at room temperature for 1 h (200 rad·min?1); centrifugation for 10 min (4000 rad·min?1).
    Carbonate-bound fractionTo Step 1 residue, add 8 mL 1 mol·L?1 NaAc (pH=5); oscillating at room temperature for 1 h (200 rad·min?1); centrifugation for 10 min (4000 rad·min?1).
    Fe?Mn oxides bound fractionTo Step 2 residue, add 20 mL 0.04 mol·L?1 NH2OH·HCl; heat to (85±2) ℃ for 4 h; centrifugation for
    10 min (4000 rad·min?1).
    Organic-bound fractionTo Step 3 residue, add 3 mL 0.02 mol·L?1 HNO3 and 5 mL of H2O2 (PH= 2?3); heat to (85±2) ℃ for 2 h; add another 10 mL of H2O2 and heat to (85±2) ℃ for 3 h; add 5 mL 3.2 mol?L?1 NH4AC; shake for
    30 min; and centrifuge at 4000 rad·min?1 for 10 min.
    Residual fractionTo Step 4 residue, add 3 mL of distilled H2O2, 7.5 mL of 6-mol?L?1 HCl, and 2.5 mL of 14-mol?L?1 HNO3; leave overnight at 20 ℃; boil under reflux for 2 h; cool and filter.
    下載: 導出CSV

    表  5  各種土壤修復方法對比

    Table  5.   Comparison of various soil remediation methods

    Remediation methodsAdvantageWeaknessApplication status
    Physical remediationExtra-soil methodThe process is easy to implement,
    and has quick and good effect
    It has a high cost and induces
    secondary pollution.
    It is widely used in the 1990s
    and has been phased out.
    Electrokinetic remediationThe operation is simple, the environmental impact is small, and
    the soil structure is not damaged.
    It can only be repaired in a small area
    and surface layer, and the repair effect is uneven. It easily corrodes the electrode and has lower remediation efficiency.
    It is a new research topic, but
    few studies on the treatment of lead-contaminated soil are available.
    Chemical remediationImmobilization/ stabilization methodThe process is easy to implement and has a low cost. It can deal with a high concentration of contaminated soil and reduce the toxicity of lead leaching.The soil volume increases after immobilization. This remediation may damage the structure of the soil, resulting in dead soil and secondary pollution.The main method has been
    applied in industrialization for
    the remediation of lead-contaminated soil.
    Chemical leachingIt can radically reduce the total lead content. The remediation is simple to operate and exhibits low cost and high efficiency.Dealing with clay soil is difficult, which may damage the soil structure and cause the contamination of the eluent.It is the main method for treating heavy lead-contaminated soil.
    BioremediationPhytoremediation Microbial remediationIt is suitable for large areas, environment-friendly, and low cost.It has a long cycle, slow effect (usually
    need to harvest plants), and it is greatly
    influenced by environmental factors. The
    contaminated plant and microorganisms
    are difficult to deal with.
    It is still in the stage of
    experiment research and does not apply in dealing with lead-contaminated soil.
    下載: 導出CSV

    表  6  各種淋洗劑修復鉛污染土壤的綜合比較

    Table  6.   Comprehensive comparison of various eluents for the remediation of lead-contaminated soil

    TypeAdvantageWeaknessApplication status
    Inorganic lotionIt is mainly composed of HCl and other
    inorganic acids, and it has a high remediation
    efficiency (>80%) for higher concentrations
    (>0.1 mol?L?1) of lead-contaminated soil. The
    process is easy to implement and has quick effect.
    It may cause soil acidification and seriously
    damage the soil structure. The eluent may
    cause groundwater pollution, and its practical application is limited.
    It has been gradually phased out,
    and there are few practical applications
    in lead-contaminated soil now.
    Artificial chelating agentIt can form a stable water-soluble complex
    with Pb2+ by chelation, and it has a good
    repair effect (60%–80%). EDTA has good
    stability and can be reused.
    It has poor biodegradability and ion
    selectivity, and it can significantly
    deteriorate the soil structure and
    chemical properties. It may pose a
    health risk due to its toxicity.
    It is suitable for the remediation of
    lead-contaminated soil, and
    developing chelating agents with
    good biodegradability is necessary.
    Natural organic acidIt consists mainly of small molecular organic
    acids. It is also self-degradable and does not
    cause secondary pollution to the environment.
    The remediation effect is slow because
    it needs to be leached repeatedly. Owing
    to the weak complexing ability with Pb2+,
    the removal rate of lead is low (< 60%),
    and it is very expensive.
    It is suitable for the remediation of
    lead-contaminated industrial and
    agricultural soil, and it has a good
    application prospect.
    下載: 導出CSV

    表  7  含磷材料修復鉛、鎘污染農田土壤的研究成果

    Table  7.   Research results of the remediation of Pb/Cd-contaminated farmland soil by phosphorous-containing materials

    Stabilizing materialpHTotal Pb content/
    (mg·kg?1)
    Addition amount
    (mole ratio)
    Remediation effect/%References
    Ground phosphate rock5.17158.76P/(Pb+Cd) = 0.01–0.4215.2–54.3 (TCLP)[56]
    Bone meal8.7–41.3 (TCLP)
    Superphosphate0–34.8 (TCLP)
    Superphosphate5.22397.90P/Pb = 0.695.69(Sulfuric acid & nitric acid method)[57]
    Micro-sized hydroxyapatite5.6167.2P/(Pb+Cd) = 1.3599.7 (TCLP)
    15.3 (Tessier)
    [58]
    Nano-sized hydroxyapatite99.3 (TCLP)
    15.2 (Tessier)
    Monopotassium4.94625P/Pb = 4.077 (CaCl2), 57 (TCLP)[59]
    Phosphorite78 (CaCl2), 54 (TCLP)
    Hydroxyapatite69 (CaCl2), 60 (TCLP)
    Monocalcium phosphate8.0956P/Pb = 6.2599.8 (TCLP)[60]
    Sodium dihydrogen phosphate99.6 (TCLP)
    下載: 導出CSV

    表  8  不同固化劑綜合比較

    Table  8.   Comprehensive comparison of different curing agents

    Curing agentAdvantageWeaknessApplication status
    PhosphateIt has a higher efficiency (>75%) and
    quick action because it is very easy to
    form precipitation with Pb2+. It can
    slightly improve soil fertility.
    The soil volume increases after
    immobilization, and it has a high
    cost because other metal ions in the soil
    have a great influence on the
    immobilization efficiency of Pb2+.
    It is mature and has been widely used
    in the immobilization remediation of
    lead-contaminated soil.
    Clay mineralsBecause of the big specific surface area and
    rich interlayer structure, it is easy to adsorb
    Pb2+ and has a low cost. It can improve soil
    properties and has a wide application.
    It has a long cycle, slow effect (usually
    needs more than 30 d), and is
    accompanied by secondary pollution.
    As a rich natural substance, some of
    them have been applied to the remediation
    of lead-contaminated soil.
    BiocharIt can significantly improve soil
    activity. It is green, recyclable, and
    it has excellent performance.
    It has low efficiency, which can be improved
    by modification. The remediation efficiency
    of Pb2+ is greatly affected by biological
    characteristics, environmental conditions, etc.
    There is a lot of research about biochar,
    and it has a good application prospect.
    下載: 導出CSV

    表  9  高鉛污染土壤的修復成果

    Table  9.   Remediation of soil contaminated by a high concentration of lead

    ScholarRemediation
    technology
    Remediation
    materials
    Total Pb
    content/
    (mg·kg?1)
    Original leaching
    concentration/
    (mg·kg?1)
    Remediation effect/%leaching
    concentration/
    (mg·kg?1)
    References
    Zhao et al.Immobilization/
    stabilization method
    Composite remediation of superphosphate, humic acid, and fly ash2500116 (CaCl2)

    1010 (DTPA)
    70.44 (CaCl2)

    51.49 (DTPA)
    34.29 (CaCl2)

    489.9 (DTPA)
    [69]
    Zhang et al.Immobilization/
    stabilization method
    Composite remediation of bentonite and lignite349740.5
    (Residual fraction states increase)
    [70]
    Basta and McGowenImmobilization/
    stabilization method
    Diammonium hydrogen phosphate515021.0 (TCLP)98.9 (TCLP)0.231 (TCLP)[71]
    Guo et al.Chemical leachingComposite remediation of HCl and rhamnolipid750068.35[72]
    Li et al.Immobilization/
    stabilization method Biochar
    Biochar1241038 (TCLP)92.1 (TCLP)3.0 (TCLP)[73]
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Lu G H, Yue C S, Peng B, et al. Review of research progress on the remediation technology of mercury contaminated soil. Chin J Eng, 2017, 39(1): 1

    盧光華, 岳昌盛, 彭犇, 等. 汞污染土壤修復技術的研究進展. 工程科學學報, 2017, 39(1):1
    [2] Suter G W, Efroymson R A, Sample B E, et al. Ecological Risk Assessment for Contaminated Sites. 1nd ED. London: Taylor & Francis, 2000
    [3] Williams P N, Lei M, Sun G, et al. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ Sci Technol, 2009, 43(3): 637 doi: 10.1021/es802412r
    [4] Tóth G, Hermann T, Silva M R, et al. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int, 2016, 88: 299 doi: 10.1016/j.envint.2015.12.017
    [5] Chen N C, Zheng Y J, He X F, et al. Analysis of the Report on the national general survey of soil contamination. J Agro Environ Sci, 2017, 36(9): 1689 doi: 10.11654/jaes.2017-1220

    陳能場, 鄭煜基, 何曉峰, 等. 《全國土壤污染狀況調查公報》探析. 農業環境科學學報, 2017, 36(9):1689 doi: 10.11654/jaes.2017-1220
    [6] He Z Q, Shen J, Ni Z L, et al. Electrochemically created roughened lead plate for electrochemical reduction of aqueous CO2. Catal Commun, 2015, 72: 38 doi: 10.1016/j.catcom.2015.08.024
    [7] Liu X M, Song Q J, Tang Y, et al. Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis. Sci Total Environ, 2013, 463-464: 530 doi: 10.1016/j.scitotenv.2013.06.064
    [8] Lin Z X. Introduction to Environment Protection. 2nd Ed. Beijing: Higher Education Press, 1999

    林肇信. 環境保護概論. 2版. 北京: 高等教育出版社, 1999
    [9] He K M, Wang S Q, Zhang J L. Blood lead levels of children and its trend in China. Sci Total Environ, 2009, 407(13): 3986 doi: 10.1016/j.scitotenv.2009.03.018
    [10] Xie Z M. Chemical cycles of lead in environment. Environ Prot Sci, 1996, 22(3): 8

    謝正苗. 環境中鉛的化學循環. 環境保護科學, 1996, 22(3):8
    [11] Liu Y H, Wei X Y, Wang X M, et al. A study of the extraction and seperation of the chemical form and available state of lead and cadmium in soil. J Agric Univ Hebei, 1998, 21(4): 44

    劉云惠, 魏顯有, 王秀敏, 等. 土壤中鉛鎘的化學形態和有效態的提取與分離研究. 河北農業大學學報, 1998, 21(4):44
    [12] Egirani D E, Poyi N R, Wessey N. Synthesis of a copper(II) oxide-montmorillonite composite for lead removal. Int J Miner Metall Mater, 2019, 26(7): 803 doi: 10.1007/s12613-019-1788-7
    [13] Yang J Y, Yang X E, Wu Y Y, et al. Resource and bio-availability of lead in soil. Chin J Soil Sci, 2005, 36(5): 765 doi: 10.3321/j.issn:0564-3945.2005.05.030

    楊金燕, 楊肖娥, 何振立. 土壤中鉛的來源及生物有效性. 土壤通報, 2005, 36(5):765 doi: 10.3321/j.issn:0564-3945.2005.05.030
    [14] Hu B F, Shao S, Ni H, et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at Province level. Environ Pollut, 2020, 266: 114961 doi: 10.1016/j.envpol.2020.114961
    [15] Wilson R, Jones-Otazo H, Petrovic S, et al. Revisiting dust and soil ingestion rates based on hand-to-mouth transfer. Hum Ecol Risk Assess:Int J, 2013, 19(1): 158 doi: 10.1080/10807039.2012.685807
    [16] Wei Y H, Huang Q C. The toxicological effect of lead on the human health and its measures of preventing. Stud Trace Elem Heal, 2008, 25(4): 62 doi: 10.3969/j.issn.1005-5320.2008.04.026

    韋友歡, 黃秋嬋. 鉛對人體健康的危害效應及其防治途徑. 微量元素與健康研究, 2008, 25(4):62 doi: 10.3969/j.issn.1005-5320.2008.04.026
    [17] Deng L, Luo F X, Wu Y Y, et al. Research progress of lead morphologic transfer and transformation in the environment// Chinese Society for Environmental Sciences. Kunming, 2013: 1836

    鄧芰, 羅付香, 吳彥瑜, 等. 鉛在環境中的形態遷移轉化研究進展// 中國環境科學學會2013年學術年會. 昆明, 2013: 1836
    [18] Huang Y H, Sun J M, Xu J, et al. Remediation of Pb-polluted soils around a smelter in Henan Province by oscillating washing with citric acid. Conserv Util Miner Resour, 2020, 40(4): 35

    黃業豪, 孫景敏, 徐靖, 等. 檸檬酸淋洗修復河南某冶煉廠周邊Pb污染土壤. 礦產保護與利用, 2020, 40(4):35
    [19] Li Z T, Wang L, Wu J Z, et al. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses. Environ Pollut, 2020, 260: 114098 doi: 10.1016/j.envpol.2020.114098
    [20] Chen S B, Zhu Y G, Yang J C. Mechanism of the effect of phosphorus on bioavailability of heavy metals in soil-plant systems. Tech Equip Environ Pollut Control, 2003(8): 1

    陳世寶, 朱永官, 楊俊誠. 土壤-植物系統中磷對重金屬生物有效性的影響機制. 環境污染治理技術與設備, 2003(8):1
    [21] Tessier A P, Campbell P, Bisson M X. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem, 1979, 51(7): 844 doi: 10.1021/ac50043a017
    [22] Quevauviller P, Rauret G, Griepink B. Single and sequential extraction in sediments and soils. Int J Environ Anal Chem, 1993, 51(1-4): 231 doi: 10.1080/03067319308027629
    [23] Li J L. Study on remediation and treatment of lead-zinc contaminated soil. Resour Econ Environ Prot, 2020(2): 53 doi: 10.3969/j.issn.1673-2251.2020.02.052

    李金林. 鉛鋅污染土壤修復治理應用技術研究. 資源節約與環保, 2020(2):53 doi: 10.3969/j.issn.1673-2251.2020.02.052
    [24] Lan L N, Sun X J. Review on the technology and application of lead contaminated soil remediation // Proceedings of the 2015 International Symposium on Material, Energy and Environment Engineering. Changsha City, 2015: 359
    [25] El-Hassanin A S, Labib T M, Dobal A T. Potential Pb, Cd, Zn and B contamination of sandy soils after different irrigation periods with sewage effluent. Water Air Soil Pollut, 1993, 66(3-4): 239 doi: 10.1007/BF00479848
    [26] Douay F, Pruvot C, Roussel H, et al. Contamination of urban soils in an area of northern France polluted by dust emissions of two smelters. Water Air Soil Pollut, 2008, 188(1-4): 247 doi: 10.1007/s11270-007-9541-7
    [27] Wan Y S, Han H, Shen M, et al. Experimental study on electrokinetic remediation of Pb contaminated soil. J Chang Univ Nat Sci, 2018, 30(6): 66

    萬玉山, 韓惠, 沈夢, 等. 鉛污染土壤的電動修復實驗研究. 常州大學學報(自然科學版), 2018, 30(6):66
    [28] Dermont G, Bergeron M, Mercier G, et al. Metal-contaminated soils: Remediation practices and treatment technologies. Pract Period Hazard Toxic Radioact Waste Manage, 2008, 12(3): 188 doi: 10.1061/(ASCE)1090-025X(2008)12:3(188)
    [29] Yan K H, Dong Z M, Wijayawardena M A A, et al. The source of lead determines the relationship between soil properties and lead bioaccessibility. Environ Pollut, 2019, 246: 53 doi: 10.1016/j.envpol.2018.11.104
    [30] Li Y S, Hu X J, Sun T H, et al. Soil washing/Flushing of contaminated soil: A review. Chin J Ecol, 2011, 30(3): 596

    李玉雙, 胡曉鈞, 孫鐵珩, 等. 污染土壤淋洗修復技術研究進展. 生態學雜志, 2011, 30(3):596
    [31] Wang Z Z, Wang H B, Wang H J, et al. Effect of soil washing on heavy metal removal and soil quality: A two-sided coin. Ecotoxicol Environ Saf, 2020, 203: 110981 doi: 10.1016/j.ecoenv.2020.110981
    [32] Dermont G, Bergeron M, Mercier G, et al. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J Hazard Mater, 2008, 152(1): 1 doi: 10.1016/j.jhazmat.2007.10.043
    [33] Li Y Y. Research on In-Situ Remediation of PB, CD Contaminated by Leaching-Immobilization in Vegetable Soil [Dissertation]. Chongqing: Southwest University, 2015

    李燕燕. 菜地土壤鉛鎘污染的原位淋洗−固化修復研究[學位論文]. 重慶: 西南大學, 2015
    [34] Zhang X, Zhou A G, Gan Y Q, et al. Advances in bioremediation technologies of contaminated soils by heavy metal in metallic mines. Environ Sci Technol, 2010, 33(3): 106 doi: 10.3969/j.issn.1003-6504.2010.03.024

    張溪, 周愛國, 甘義群, 等. 金屬礦山土壤重金屬污染生物修復研究進展. 環境科學與技術, 2010, 33(3):106 doi: 10.3969/j.issn.1003-6504.2010.03.024
    [35] Sarwar N, Imran M, Shaheen M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 2017, 171: 710 doi: 10.1016/j.chemosphere.2016.12.116
    [36] Gomes M A D C, Hauser-Davis R A, de Souza A N, et al. Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicol Environ Saf, 2016, 134: 133 doi: 10.1016/j.ecoenv.2016.08.024
    [37] Chen W M, Wu C H, James E K, et al. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater, 2008, 151(2-3): 364 doi: 10.1016/j.jhazmat.2007.05.082
    [38] Tang Y T, Qiu R L, Zeng X W, et al. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ Exp Bot, 2009, 66(1): 126 doi: 10.1016/j.envexpbot.2008.12.016
    [39] Ke X, Li P J, Gong Z Q, et al. Advances in Flushing agents used for remediation of heavy metal-contaminated soil. Chin J Ecol, 2004, 23(5): 145 doi: 10.3321/j.issn:1000-4890.2004.05.028

    可欣, 李培軍, 鞏宗強, 等. 重金屬污染土壤修復技術中有關淋洗劑的研究進展. 生態學雜志, 2004, 23(5):145 doi: 10.3321/j.issn:1000-4890.2004.05.028
    [40] Liu S Y, Yue C S, Peng B, et al. Research progress on remediation technologies of chromium-contaminated soil: A review. Chin J Eng, 2018, 40(11): 1275

    劉仕業, 岳昌盛, 彭犇, 等. 鉻污染毒性土壤清潔修復研究進展與綜合評價. 工程科學學報, 2018, 40(11):1275
    [41] Xu W W, Teng Y T, Ren J H, et al. Effect of different activators on the remediation of Cd and Pb single and compound contaminated soils. Environ Pollut Control, 2019, 41(8): 882

    許偉偉, 滕玉婷, 任靜華, 等. 不同活化劑對鎘、鉛單一及復合污染土壤的修復效果影響. 環境污染與防治, 2019, 41(8):882
    [42] Chen C L, Tian T, Wang M K, et al. Release of Pb in soils washed with various extractants. Geoderma, 2016, 275: 74 doi: 10.1016/j.geoderma.2016.04.015
    [43] Tampouris S, Papassiopi N, Paspaliaris I. Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. J Hazard Mater, 2001, 84(2-3): 297 doi: 10.1016/S0304-3894(01)00233-3
    [44] Wang X H, Liu Y G, Zeng G M, et al. Extraction of heavy metals from contaminated soils with EDTA and their redistribution of fractions. Environ Sci, 2006, 27(5): 1008 doi: 10.3321/j.issn:0250-3301.2006.05.035

    王顯海, 劉云國, 曾光明, 等. EDTA溶液修復重金屬污染土壤的效果及金屬的形態變化特征. 環境科學, 2006, 27(5):1008 doi: 10.3321/j.issn:0250-3301.2006.05.035
    [45] Feng J, Zhang Z Q, Li N, et al. Washing of heavy metal contaminated soil around a lead-zinc smelter by several chelating agents and the leached soil utilization. Chin J Environ Eng, 2015, 9(11): 5617 doi: 10.12030/j.cjee.20151177

    馮靜, 張增強, 李念, 等. 鉛鋅廠重金屬污染土壤的螯合劑淋洗修復及其應用. 環境工程學報, 2015, 9(11):5617 doi: 10.12030/j.cjee.20151177
    [46] Chen X T, Wang X, Chen X. Study on the exaction efficiency of heavy metals by chelates. Jiang Su Environ Sci Technol, 2005, 18(2): 9

    陳曉婷, 王欣, 陳新. 幾種螯合劑對污染土壤的重金屬提取效率的研究. 江蘇環境科技, 2005, 18(2):9
    [47] Wang Q W, Chen J J, Zheng A H, et al. Dechelation of Cd-EDTA complex and recovery of EDTA from simulated soil-washing solution with sodium sulfide. Chemosphere, 2019, 220(1): 1200
    [48] Yang Z H, Zhang S J, Liao Y P, et al. Remediation of heavy metal contamination in calcareous soil by washing with reagents: A column washing. Procedia Environ Sci, 2012, 16: 778 doi: 10.1016/j.proenv.2012.10.106
    [49] Papassiopi N, Tambouris S, Kontopoulos A. Removal of Heavy Metals from Calcareous Contaminated Soils by EDTA Leaching. Water Air Soil Pollut, 1999, 109: 1 doi: 10.1023/A:1005089515217
    [50] Gao G L, Zhang W, Zhou L B, et al. Progress in chemical leaching of heavy metal contaminated soil. Nonferrous Met Eng, 2013, 3(1): 49

    高國龍, 張望, 周連碧, 等. 重金屬污染土壤化學淋洗技術進展. 有色金屬工程, 2013, 3(1):49
    [51] Ke X, Zhang F J, Zhou Y, et al. Removal of Cd, Pb, Zn, Cu in smelter soil by citric acid leaching. Chemosphere, 2020, 255: 126690 doi: 10.1016/j.chemosphere.2020.126690
    [52] Gao K, Zhu R, Zou H, et al. Remediation of Pb, Cd, Cu contaminated soil by ultrasonic-enhanced leaching. Chin J Environ Eng, 2018, 12(8): 2328 doi: 10.12030/j.cjee.201801076

    高珂, 朱榮, 鄒華, 等. 超聲強化淋洗修復Pb、Cd、Cu復合污染土壤. 環境工程學報, 2018, 12(8):2328 doi: 10.12030/j.cjee.201801076
    [53] Zhang H, Gao Y, Xiong H. Removal of heavy metals from polluted soil using the citric acid fermentation broth: A promising washing agent. Environ Sci Pollut Res Int, 2017, 24(10): 9506 doi: 10.1007/s11356-017-8660-y
    [54] Zeng H Z. Remediation of Heavy Metals Contaminated by Lead and Cadmium by Natural Organic Acids and Surfactants [Dissertation]. Nanchang: Nanchang Hangkong University, 2018

    曾鴻澤. 天然有機酸與表面活性劑修復重金屬鉛、鎘污染土壤的研究[學位論文]. 南昌: 南昌航空大學, 2018
    [55] Li R S, Li L Y. Enhancement of electrokinetic extraction from lead-spiked soils. J Environ Eng, 2000, 126(9): 849 doi: 10.1061/(ASCE)0733-9372(2000)126:9(849)
    [56] Huang G Y, Su X J, Rizwan M S, et al. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils. Environ Sci Pollut Res Int, 2016, 23(16): 16845 doi: 10.1007/s11356-016-6885-9
    [57] Wu L S, Zeng D M, Mo X R, et al. Immobilization impact of different fixatives on heavy metals contaminated soil. Environ Sci, 2015, 36(1): 309

    吳烈善, 曾東梅, 莫小榮, 等. 不同鈍化劑對重金屬污染土壤穩定化效應的研究. 環境科學, 2015, 36(1):309
    [58] Liu H Y, Zhang Y J, Chen N Y, et al. Effect of surface characteristics of hydroxyapatite on the remediation passivation effect of heavy metal contaminated soil. Environ Chem, 2018, 37(9): 1961 doi: 10.7524/j.issn.0254-6108.2017110202

    劉弘禹, 張玉杰, 陳寧怡, 等. 羥基磷灰石表面特性差異對重金屬污染土壤固化修復的影響. 環境化學, 2018, 37(9):1961 doi: 10.7524/j.issn.0254-6108.2017110202
    [59] Su X J, Zhu J, Fu Q L, et al. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid. J Environ Sci, 2015, 28: 64 doi: 10.1016/j.jes.2014.07.022
    [60] Wang Y M, Chen T C, Yeh K J, et al. Stabilization of an elevated heavy metal contaminated site. J Hazard Mater, 2001, 88(1): 63 doi: 10.1016/S0304-3894(01)00289-8
    [61] Wang J L, Xie S B, Tu G Q, et al. Comparison of several amendments for in situ remediation of lead-and cadmium-contaminated farmland soil. J Agro Environ Sci, 2019, 38(2): 325 doi: 10.11654/jaes.2018-0597

    王建樂, 謝仕斌, 涂國權, 等. 多種材料對鉛鎘污染農田土壤原位修復效果的研究. 農業環境科學學報, 2019, 38(2):325 doi: 10.11654/jaes.2018-0597
    [62] Bashir S, Shaaban M, Hussain Q, et al. Influence of organic and inorganic passivators on Cd and Pb stabilization and microbial biomass in a contaminated paddy soil. J Soils Sediments, 2018, 18(9): 2948 doi: 10.1007/s11368-018-1981-8
    [63] Uchimiya M, Lima I M, Thomas Klasson K, et al. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J Agric Food Chem, 2010, 58(9): 5538 doi: 10.1021/jf9044217
    [64] Puga A P, Abreu C A, Melo L C A, et al. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J Environ Manag, 2015, 159: 86 doi: 10.1016/j.jenvman.2015.05.036
    [65] Zhou H B, Meng H B, Zhao L X, et al. Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting. Bioresour Technol, 2018, 258: 279 doi: 10.1016/j.biortech.2018.02.086
    [66] Dai J, Liu Y S. Adsorption of Pb2+ and Cd2+ onto biochars derived from pyrolysis of four kinds of biomasses. Acta Sci Nat Univ Pekin, 2013, 49(6): 1075

    戴靜, 劉陽生. 四種原料熱解產生的生物炭對Pb2+和Cd2+的吸附特性研究. 北京大學學報(自然科學版), 2013, 49(6):1075
    [67] Teng F Y, Zhang Y X, Wang D Q, et al. Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil. J Hazard Mater, 2020, 398: 122977 doi: 10.1016/j.jhazmat.2020.122977
    [68] Li Y J, Li L, Liu Y M, et al. Remediation of lead-zinc polymetallic mine contaminated soils by MnFe2O4 micro-particles. J Arid Land Resour Environ, 2019, 33(1): 101

    李元杰, 李林, 劉永茂, 等. 鉛鋅礦區土壤重金屬污染MnFe2O4納米微粒修復技術研究. 干旱區資源與環境, 2019, 33(1):101
    [69] Zhao Q Y, Li X M, Yang Q, et al. Passivation of simulated Pb-and Cd-contaminated soil by applying combined treatment of phosphate, humic acid, and fly ash. Environ Sci, 2018, 39(1): 389

    趙慶圓, 李小明, 楊麒, 等. 磷酸鹽、腐殖酸與粉煤灰聯合鈍化處理模擬鉛鎘污染土壤. 環境科學, 2018, 39(1):389
    [70] Zhang J J, Zhao Y Q, Wang F F, et al. Immobilization and remediation of Pb contaminated soil treated with bentonite, lignite and their mixed addition. Ecol Environ Sci, 2019, 28(2): 395

    張靜靜, 趙永芹, 王菲菲, 等. 膨潤土、褐煤及其混合添加對鉛污染土壤鈍化修復效應研究. 生態環境學報, 2019, 28(2):395
    [71] Basta N T, McGowen S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut, 2004, 127(1): 73 doi: 10.1016/S0269-7491(03)00250-1
    [72] Guo W, Zhang H Z, Yin X X, et al. Comparison of single and compound washing of remediating Pb contaminated soil of non-ferrous smelters. Appl Ecol Env Res, 2020, 18(1): 901 doi: 10.15666/aeer/1801_901912
    [73] Li X W, Liu Z M, Luo Y X, et al. Research on biochar for remedying heavy metal contaminated soils with high concentration of lead and zinc contamination. Ind Constr, 2017, 47(9): 101

    李雄威, 劉正明, 羅元喜, 等. 生物炭修復高濃度鉛鋅污染土的試驗研究. 工業建筑, 2017, 47(9):101
  • 加載中
圖(3) / 表(9)
計量
  • 文章訪問數:  1603
  • HTML全文瀏覽量:  335
  • PDF下載量:  65
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-04-08
  • 網絡出版日期:  2021-05-24
  • 刊出日期:  2022-02-15

目錄

    /

    返回文章
    返回