<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

海上風電復合基礎承載性能對比研究

孫艷國 許成順 杜修力 王丕光 席仁強 孫毅龍

孫艷國, 許成順, 杜修力, 王丕光, 席仁強, 孫毅龍. 海上風電復合基礎承載性能對比研究[J]. 工程科學學報, 2022, 44(6): 1098-1107. doi: 10.13374/j.issn2095-9389.2021.04.07.007
引用本文: 孫艷國, 許成順, 杜修力, 王丕光, 席仁強, 孫毅龍. 海上風電復合基礎承載性能對比研究[J]. 工程科學學報, 2022, 44(6): 1098-1107. doi: 10.13374/j.issn2095-9389.2021.04.07.007
SUN Yan-guo, XU Cheng-shun, DU Xiu-li, WANG Pi-guang, Xi Ren-qiang, SUN Yi-long. Comparison of the bearing capacities of composite foundations for offshore wind turbines[J]. Chinese Journal of Engineering, 2022, 44(6): 1098-1107. doi: 10.13374/j.issn2095-9389.2021.04.07.007
Citation: SUN Yan-guo, XU Cheng-shun, DU Xiu-li, WANG Pi-guang, Xi Ren-qiang, SUN Yi-long. Comparison of the bearing capacities of composite foundations for offshore wind turbines[J]. Chinese Journal of Engineering, 2022, 44(6): 1098-1107. doi: 10.13374/j.issn2095-9389.2021.04.07.007

海上風電復合基礎承載性能對比研究

doi: 10.13374/j.issn2095-9389.2021.04.07.007
基金項目: 國家自然科學基金資助項目(51722801)
詳細信息
    通訊作者:

    E-mail: xuchengshun@bjut.edu.cn

  • 中圖分類號: TU47

Comparison of the bearing capacities of composite foundations for offshore wind turbines

More Information
  • 摘要: 受到上部結構自重以及海洋環境荷載的影響,海上風電基礎設計時應考慮豎向荷載、水平荷載以及彎矩荷載作用下基礎的承載性能。本文通過有限元軟件ABAQUS,對比研究了飽和黏土場地中大直徑單樁基礎、樁?平臺復合基礎以及樁?筒復合基礎在豎向荷載V、水平荷載H、彎矩荷載M作用下的承載性能。研究結果表明兩種復合基礎較單樁基礎呈現出顯著的承載性能優勢。樁?平臺復合基礎的豎向承載力、水平承載力以及抗彎承載力隨著附加平臺直徑的增大呈指數型增加;樁?筒復合基礎的豎向承載力以及抗彎承載力隨著筒結構入土深度的增加先增大然后趨于穩定,樁?筒復合基礎的水平承載力與筒直徑以及筒入土深度為雙參數線性增加關系。V?H以及V?M復合荷載加載條件下,兩種復合基礎比單樁基礎的破壞包絡線空間大,兩種復合基礎的穩定性相對單樁基礎有顯著提升。在一定承載范圍內,附加平臺結構或筒型結構可以減小樁的直徑或入土深度。

     

  • 圖  1  單樁、樁? 平臺復合基礎、樁? 筒復合基礎示意圖

    Figure  1.  Monopile, pile–plate composite foundation, and pile–bucket composite foundation

    圖  2  有限元模型驗證

    Figure  2.  Validation of the model

    圖  3  P20B2有限元網格

    Figure  3.  Finite element mesh of P20B2

    圖  4  極限承載力確定(P10)

    Figure  4.  Determination of the ultimate bearing capacity

    圖  5  樁?平臺復合基礎豎向承載特性。(a)v?V圖;(b)豎向極限承載力與平臺直徑的關系;(c)樁?平臺復合基礎豎向極限承載力提高系數

    Figure  5.  Vertical bearing characteristics of pile–plate composite foundations: (a) vV; (b) relationship between vertical ultimate bearing capacity and diameter of the plate; (c) improvement coefficient of the vertical ultimate bearing capacity of the pile–plate composite foundation

    圖  6  樁?筒復合基礎豎向承載性能對比。(a)v?V圖;(b)樁?筒復合基礎豎向極限承載力與筒直徑的關系;(c)樁?筒復合基礎豎向極限承載力提高系數             

    Figure  6.  Vertical bearing characteristics of pile–bucket composite foundations: (a) vV; (b) relationship between vertical ultimate bearing capacity and diameter of the bucket; (c) improvement coefficient of the vertical ultimate bearing capacity of the pile–bucket composite foundation

    圖  7  樁?平臺復合基礎水平承載特性。(a)h?H圖;(b)水平極限承載力與平臺直徑的關系;(c)樁?平臺復合基礎水平極限承載力提高系數

    Figure  7.  Horizontal bearing characteristics of pile–plate composite foundations: (a) hH; (b) relationship between horizontal ultimate bearing capacity and diameter of the plate; (c) improvement coefficient of the horizontal ultimate bearing capacity of the pile–plate composite foundation

    圖  8  樁?筒復合基礎水平承載性能對比。(a)h?H圖;(b)樁?筒復合基礎水平極限承載力;(c)樁?筒復合基礎水平極限承載力提高系數

    Figure  8.  Horizontal bearing characteristics of pile–bucket composite foundations: (a) hH; (b) relationship between horizontal ultimate bearing capacity and diameter of the plate; (c) improvement coefficient of the horizontal ultimate bearing capacity of the pile–plate composite foundation

    圖  9  樁?平臺復合基礎抗彎承載性能對比。(a)θ?M圖;(b)樁?平臺復合基礎抗彎極限承載力;(c)樁?平臺復合基抗彎極限承載力提高系數

    Figure  9.  Bending bearing characteristics of pile–plate composite foundations: (a) θM; (b) relationship between ultimate bending capacity and diameter of the plate; (c) improvement coefficient of the ultimate bending capacity of the pile–plate composite foundation

    圖  10  樁?筒復合基礎抗彎承載性能。(a)θ?M圖;(b)樁?筒復合基礎抗彎極限承載力;(c)樁?筒復合基礎抗彎極限承載力提高系數

    Figure  10.  Bending bearing characteristics of pile–bucket composite foundations: (a) θM; (b) relationship between ultimate bending capacity and diameter of the bucket; (c) improvement coefficient of the ultimate bending capacity of the pile–bucket composite foundation

    圖  11  V?H加載條件下基礎的破壞包絡線。(a)樁?平臺復合基礎;(b)筒直徑為10 m時樁?筒復合基礎;(c)筒直徑為15 m時樁?筒復合基礎;(d)筒直徑為20 m時樁?筒復合基礎

    Figure  11.  V–H failure envelopes of (a) pile–plate composite foundations; (b) pile–bucket composite foundations (the diameter of the bucket is 10 m); (c) pile–bucket composite foundations (the diameter of the bucket is 15 m); (d) pile–bucket composite foundations (the diameter of the bucket is 20 m)

    圖  12  V?M加載條件下基礎的破壞包絡線。(a)樁?平臺復合基礎;(b)筒直徑為10 m時樁?筒復合基礎;(c)筒直徑為15 m時樁?筒復合基礎;(d)筒直徑為20 m時樁?筒復合基礎

    Figure  12.  V–M failure envelopes: (a) pile–plate composite foundation; (b) pile–bucket composite foundation (the diameter of the bucket is 10 m); (c) pile–bucket composite foundation (the diameter of the bucket is 15 m); (d) pile–bucket composite foundation (the diameter of the bucket is 20 m)

    圖  13  破壞包絡線參數敏感性分析。(a)V?H;(b)V?M

    Figure  13.  Parameter sensitivity analysis of failure envelopes: (a) V–H; (b) V–M

    表  1  荷載及位移符號規定

    Table  1.   Sign conventions for loads and displacements

    Description of physical symbolsVertical loadingHorizontal loadingBending moment
    LoadingVHM
    Ultimate bearing capacityVultHultMult
    Dimensionless loadingV/(ASu)H/(ASu)M/(ADSu)
    Dimensionless ultimate bearing capacityVult/(ASu)Hult/(ASu)Mult/(ADSu)
    Displacementvhθ
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Díaz H, Soares C G. Review of the current status, technology and future trends of offshore wind farms. Ocean Eng, 2020, 209: 107381 doi: 10.1016/j.oceaneng.2020.107381
    [2] Wang X F, Zeng X W, Li J L, et al. A review on recent advancements of substructures for offshore wind turbines. Energy Convers Manag, 2018, 158: 103 doi: 10.1016/j.enconman.2017.12.061
    [3] Oh K Y, Nam W, Ryu M S, et al. A review of foundations of offshore wind energy convertors: Current status and future perspectives. Renew Sustain Energy Rev, 2018, 88: 16 doi: 10.1016/j.rser.2018.02.005
    [4] Song B, Zhao W N, Shuang M. Analysis of the influence of scour depth on the dynamic response of offshore wind turbine towers under earthquake action. Chin J Eng, 2019, 41(10): 1351

    宋波, 趙偉娜, 雙妙. 沖刷深度對海上風電塔地震動力響應的影響分析. 工程科學學報, 2019, 41(10):1351
    [5] Damiani R, Dykes K, Scott G. A comparison study of offshore wind support structures with monopiles and jackets for US waters. J Phys:Conf Ser, 2016, 753: 092003 doi: 10.1088/1742-6596/753/9/092003
    [6] Veers P, Dykes K, Lantz E, et al. Grand challenges in the science of wind energy. Science, 2019, 366(6464): 2027 doi: 10.1126/science.aau2027
    [7] Dnv G L. DNVGL-ST-0126: Support Structures for Wind Turbines. Oslo: DNV GL, 2016
    [8] International Electrotechnical Commission. IEC 61400-3 Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines. Geneva: International Electrotechnical Commission, 2009
    [9] Yang Q, Yu P, Liu Y F, et al. Scour characteristics of an offshore umbrella suction anchor foundation under the combined actions of waves and currents. Ocean Eng, 2020, 202: 106701 doi: 10.1016/j.oceaneng.2019.106701
    [10] Li H J, Liu H J, Liu S Y. Dynamic analysis of umbrella suction anchor foundation embedded in seabed for offshore wind turbines. Geomech Energy Environ, 2017, 10: 12 doi: 10.1016/j.gete.2017.05.002
    [11] Wang X F, Zeng X W, Yang X, et al. Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling. Appl Energy, 2018, 209: 127 doi: 10.1016/j.apenergy.2017.10.107
    [12] Anastasopoulos I, Theofilou M. Hybrid foundation for offshore wind turbines: Environmental and seismic loading. Soil Dyn Earthq Eng, 2016, 80: 192 doi: 10.1016/j.soildyn.2015.10.015
    [13] Lehane B M, Pedram B, Doherty J A, et al. Improved performance of monopiles when combined with footings for tower foundations in sand. J Geotech Geoenviron Eng, 2014, 140(7): 04014027 doi: 10.1061/(ASCE)GT.1943-5606.0001109
    [14] Stone K J L, Arshi H S, Zdravkovic L. Use of a bearing plate to enhance the lateral capacity of monopiles in sand. J Geotech Geoenviron Eng, 2018, 144(8): 04018051 doi: 10.1061/(ASCE)GT.1943-5606.0001913
    [15] Zhu D J. Research of a New Type of Foundation for Offshore Wind Turbines with the Combining of Monoplie Foundation and Bucket Foundation [Dissertation]. Tianjin: Tianjin University, 2012

    朱東劍. 筒型基礎與單樁相結合的新型復合風電基礎研究[學位論文]. 天津: 天津大學, 2012
    [16] Liu R, Li B R, Lian J J, et al. Bearing characteristics of pile-bucket composite foundation for offshore wind turbine. J Tianjin Univ (Sci Technol), 2015, 48(5): 429

    劉潤, 李寶仁, 練繼建, 等. 海上風電單樁復合筒型基礎樁筒共同承載機制研究. 天津大學學報(自然科學與工程技術版), 2015, 48(5):429
    [17] Chen D, Gao P, Huang S S, et al. Static and dynamic loading behavior of a hybrid foundation for offshore wind turbines. Mar Struct, 2020, 71: 102727 doi: 10.1016/j.marstruc.2020.102727
    [18] Hung L C, Kim S R. Evaluation of undrained bearing capacities of bucket foundations under combined loads. Mar Georesources Geotechnol, 2014, 32(1): 76 doi: 10.1080/1064119X.2012.735346
    [19] Mehravar M, Harireche O, Faramarzi A. Evaluation of undrained failure envelopes of caisson foundations under combined loading. Appl Ocean Res, 2016, 59: 129 doi: 10.1016/j.apor.2016.05.001
    [20] Hung L C, Kim S R. Evaluation of vertical and horizontal bearing capacities of bucket foundations in clay. Ocean Eng, 2012, 52: 75 doi: 10.1016/j.oceaneng.2012.06.001
    [21] Fan Q L, Luan M T. Failure envelopes of bucket foundation for offshore wind turbines in V?H?T loading space. China Civ Eng J, 2010, 43(4): 113

    范慶來, 欒茂田. V?H?T荷載空間內海上風機桶形基礎破壞包絡面特性分析. 土木工程學報, 2010, 43(4):113
    [22] Feng X, Randolph M F, Gourvenec S, et al. Design approach for rectangular mudmats under fully three-dimensional loading. Géotechnique, 2014, 64(1): 51
    [23] Tan F S. Centrifuge and theoretical modelling of conical footings on sand [Dissertation]. UK: University of Cambridge, 1990
  • 加載中
圖(13) / 表(1)
計量
  • 文章訪問數:  941
  • HTML全文瀏覽量:  343
  • PDF下載量:  55
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-04-07
  • 網絡出版日期:  2021-05-31
  • 刊出日期:  2022-06-25

目錄

    /

    返回文章
    返回