<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

不同鈦酸四丁酯含量對GO?TiO2復合材料組織結構和性能的影響

于凱倫 王博 韓慶 陳建設 李斌川 魏世丞

于凱倫, 王博, 韓慶, 陳建設, 李斌川, 魏世丞. 不同鈦酸四丁酯含量對GO?TiO2復合材料組織結構和性能的影響[J]. 工程科學學報, 2022, 44(8): 1360-1367. doi: 10.13374/j.issn2095-9389.2021.03.30.004
引用本文: 于凱倫, 王博, 韓慶, 陳建設, 李斌川, 魏世丞. 不同鈦酸四丁酯含量對GO?TiO2復合材料組織結構和性能的影響[J]. 工程科學學報, 2022, 44(8): 1360-1367. doi: 10.13374/j.issn2095-9389.2021.03.30.004
YU Kai-lun, WANG Bo, HAN Qing, CHEN Jian-she, LI Bin-chuan, WEI Shi-cheng. Effects of different mass ratios of tetrabutyl titanate on the microstructure and properties of GO?TiO2 composite materials[J]. Chinese Journal of Engineering, 2022, 44(8): 1360-1367. doi: 10.13374/j.issn2095-9389.2021.03.30.004
Citation: YU Kai-lun, WANG Bo, HAN Qing, CHEN Jian-she, LI Bin-chuan, WEI Shi-cheng. Effects of different mass ratios of tetrabutyl titanate on the microstructure and properties of GO?TiO2 composite materials[J]. Chinese Journal of Engineering, 2022, 44(8): 1360-1367. doi: 10.13374/j.issn2095-9389.2021.03.30.004

不同鈦酸四丁酯含量對GO?TiO2復合材料組織結構和性能的影響

doi: 10.13374/j.issn2095-9389.2021.03.30.004
基金項目: 國家自然科學基金資助項目(51905543, 51675533, 51701238);國防科技卓越青年科學基金資助項目(2017-JCJQ-ZQ-001);中國博士后科學基金資助項目(2018M643857)
詳細信息
    通訊作者:

    王博,E-mail: wangbobo421@163.com

    魏世丞,E-mail: wsc33333@163.com

  • 中圖分類號: TB33

Effects of different mass ratios of tetrabutyl titanate on the microstructure and properties of GO?TiO2 composite materials

More Information
  • 摘要: 以氧化石墨烯和鈦酸四丁酯為原料,采用一步水熱法制備氧化石墨烯/二氧化鈦(GO?TiO2)復合材料,研究不同鈦酸四丁酯含量對GO?TiO2復合材料組織和性能的影響規律。通過掃描電鏡(SEM)、X射線衍射(XRD)、紅外光譜(IR)、拉曼光譜(RS)、紫外?可見分光光度計(UV?vis)、熱重分析儀(TGA)等對復合材料的微觀形貌、物相組成、結構、吸光性和熱穩定性進行表征。研究結果表明,隨著鈦酸四丁酯含量的增加,有利于GO?TiO2復合材料的均勻分散,提高了GO?TiO2復合材料的吸光性和熱穩定性,但鈦酸四丁酯含量過高會使GO?TiO2復合材料分散性、吸光性和熱穩定性下降。當氧化石墨烯質量為320 mg、鈦酸四丁酯含量為100 mL時,反應生成的復合材料表面TiO2分散均勻,缺陷少,D峰與G峰的峰強比(ID/IG)值為0.91,氧化石墨烯和二氧化鈦復合程度高,復合材料中的TiO2吸收邊緣紅移至可見光范圍內,并且在440~800 nm可見光范圍內的吸收峰明顯增強,防腐防污能力增強,復合材料在800 ℃熱穩定性相比于氧化石墨烯提高了84.89%。

     

  • 圖  1  GO?TiO2的合成過程示意圖

    Figure  1.  Schematic of the synthesis process of GO–TiO2

    圖  2  不同鈦酸四丁酯含量的GO?TiO2的SEM和EDX圖. SEM:(a) GO; (b)1#;(c) 2#; (d)3#; (e)4#; (f) 5#; EDX : (g) 面掃; (h) 元素原子比

    Figure  2.  SEM and EDX images of GO–TiO2 composites with different mass ratios of tetrabuty titanate: SEM of (a) GO; (b) 1#; (c) 2#; (d) 3#; (e) 4#; (f) 5#; and EDS of (g) mapping; (h) atomic ratio of element

    圖  3  不同鈦酸四丁酯含量的GO?TiO2的XRD圖

    Figure  3.  XRD images of GO–TiO2 composites with different mass ratios of tetrabutyl titanate

    圖  4  氧化石墨烯和不同鈦酸四丁酯含量的GO?TiO2的紅外光譜

    Figure  4.  FT–IR spectra of GO and GO–TiO2 composites with different mass ratios of tetrabutyl titanate

    圖  5  不同鈦酸四丁酯含量的GO?TiO2的拉曼光譜圖. (a) 波數為50~800 cm?1; (b) 波數為800~4000 cm?1

    Figure  5.  Raman spectra images of GO–TiO2 composites with different mass ratios of tetrabutyl titanate: (a) wavenumber of 50–800 cm?1; (b) wavenumber of 800–4000 cm?1

    圖  6  不同鈦酸四丁酯含量的GO?TiO2的紫外可見吸收光譜

    Figure  6.  UV?vis spectra of GO–TiO2 composites with different mass ratios of tetrabutyl titanate

    圖  7  不同鈦酸四丁酯含量的GO?TiO2的TG圖

    Figure  7.  TG images of GO–TiO2 composites with different mass ratios of tetrabutyl titanate

    表  1  不同鈦酸四丁酯的含量

    Table  1.   Different mass ratios of tetrabutyl titanate

    NumberGraphene oxide /mgTetrabutyl titanate/mL
    1#32040
    2#32060
    3#32080
    4#320100
    5#320120
    下載: 導出CSV

    表  2  不同鈦酸四丁酯含量的GO?TiO2ID/IG

    Table  2.   ID/IG of GO–TiO2 composites with different mass ratios of tetrabutyl titanate

    NumberID/IG
    GO1.181
    1#1.069
    2#1.049
    3#1.002
    4#0.91
    5#0.948
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang C Y. Hazards and protection of metal corrosion. Mech Manag Dev, 2012, 27(5): 111 doi: 10.3969/j.issn.1003-773X.2012.05.057

    王彩云. 金屬腐蝕的危害及防護. 機械管理開發, 2012, 27(5):111 doi: 10.3969/j.issn.1003-773X.2012.05.057
    [2] Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China. Npj Mater Degrad, 2017, 1(1): 1 doi: 10.1038/s41529-017-0001-6
    [3] Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect. Bull Chin Acad Sci, 2016, 31(12): 1326

    侯保榮, 張盾, 王鵬. 海洋腐蝕防護的現狀與未來. 中國科學院院刊, 2016, 31(12):1326
    [4] Wang B. Preparation and Protective Mechanism of Nano-Ti Polymer Anti-Corrosion Coating [Dissertation]. Chongqing: Chongqing University, 2017

    王博. 鈦納米聚合物防腐功能涂層制備及防護機理研究[學位論文]. 重慶: 重慶大學, 2017
    [5] Yang T, Cui Y N, Li Z S, et al. Enhancement of the corrosion resistance of epoxy coating by highly stable 3, 4, 9, 10-perylene tetracarboxylic acid functionalized graphene. J Hazard Mater, 2018, 357: 475 doi: 10.1016/j.jhazmat.2018.06.038
    [6] Aneja K S, B?hm H L M, Khanna A S, et al. Functionalised graphene as a barrier against corrosion. FlatChem, 2017, 1: 11 doi: 10.1016/j.flatc.2016.08.003
    [7] Zhang X, Xu J H, Li H L, et al. Study of corrosion protection anticorrosion coating with modified glass flake and polyphenylene sulfide. Paint Coat Ind, 2013, 43(7): 33 doi: 10.3969/j.issn.0253-4312.2013.07.008

    張昕, 許季海, 李紅良, 等. 聚苯硫醚摻雜改性玻璃鱗片防腐涂層耐腐蝕性研究. 涂料工業, 2013, 43(7):33 doi: 10.3969/j.issn.0253-4312.2013.07.008
    [8] Chen W J, Shan J G, Wang W, et al. Coating technology and quality control of glass flake reinforced vinyl ester coating. Corros Prot, 2017, 38(2): 147 doi: 10.11973/fsyfh-201702013

    陳偉軍, 單景剛, 王維, 等. 乙烯酯玻璃鱗片涂層的涂裝技術及質量控制. 腐蝕與防護, 2017, 38(2):147 doi: 10.11973/fsyfh-201702013
    [9] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197 doi: 10.1038/nature04233
    [10] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
    [11] Liu P P, Liu S Q, Gao H Y, et al. Preparation and properties of hydroxyapatite aerogel composite phase change materials. Chin J Eng, 2020, 42(1): 120

    劉盼盼, 劉斯奇, 高鴻毅, 等. 羥基磷灰石氣凝膠復合相變材料的制備及其性能. 工程科學學報, 2020, 42(1):120
    [12] Wang Y X, Myers M, Staser J A. Electrochemical UV sensor using carbon quantum dot/graphene semiconductor. J Electrochem Soc, 2017, 165(4): H3001
    [13] Shui L, Zhang K, Yu H. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al-15Si-4Cu-Mg matrix composites. Chin J Eng, 2019, 41(9): 1162

    水麗, 張凱, 于宏. 石墨烯含量對石墨烯/Al-15Si-4Cu-Mg復合材料微觀組織和力學性能的影響. 工程科學學報, 2019, 41(9):1162
    [14] Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem Rev, 2012, 112(11): 6027 doi: 10.1021/cr300115g
    [15] Shumaila, Khan S, Khan Z M S H, et al. Facile synthesis of highly conducting polypyrrole and reduced graphene oxide nanocomposites for low-turn-on electron field emitters. J Phys Chem Solids, 2020, 143: 109522 doi: 10.1016/j.jpcs.2020.109522
    [16] Tavakol M, Montazeri A, Aboutalebi S H, et al. Mechanical properties of graphene oxide: The impact of functional groups. Appl Surf Sci, 2020, 525: 146554 doi: 10.1016/j.apsusc.2020.146554
    [17] Suvarna K S, Binitha N N. Graphene preparation by jaggery assisted ball-milling of graphite for the adsorption of Cr(VI). Mater Today:Proc, 2020, 25: 236 doi: 10.1016/j.matpr.2020.01.209
    [18] Sun Y, Chen L, Yu J M, et al. Lightweight graphene oxide-based sponges with high compressibility and durability for dye adsorption. Carbon, 2020, 160: 54 doi: 10.1016/j.carbon.2020.01.009
    [19] Yang N, Yang T, Wang W, et al. Polydopamine modified polyaniline-graphene oxide composite for enhancement of corrosion resistance. J Hazard Mater, 2019, 377: 142 doi: 10.1016/j.jhazmat.2019.05.063
    [20] Chauhan D S, Quraishi M A, Ansari K R, et al. Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario. Prog Org Coat, 2020, 147: 105741 doi: 10.1016/j.porgcoat.2020.105741
    [21] Chang C I, Chang K H, Shen H H, et al. A unique two-step Hummers method for fabricating low-defect graphene oxide nanoribbons through exfoliating multiwalled carbon nanotubes. J Taiwan Inst Chem Eng, 2014, 45(5): 2762 doi: 10.1016/j.jtice.2014.05.030
    [22] O'Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737 doi: 10.1038/353737a0
    [23] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37 doi: 10.1038/238037a0
    [24] Braun J H, Baidins A, Marganski R E. TiO2 pigment technology: A review. Prog Org Coat, 1992, 20(2): 105 doi: 10.1016/0033-0655(92)80001-D
    [25] Yao L R, Dong L, Li X J, et al. Photocatalytic performance of TiO2-intercalated graphene oxide toward methylene blue. Shanghai Text Sci Technol, 2018, 46(11): 58

    姚理榮, 董莉, 李小娟, 等. TiO2插層氧化石墨烯降解亞甲基藍性能研究. 上海紡織科技, 2018, 46(11):58
    [26] Morales-Torres S, Pastrana-Martínez L M, Figueiredo J L, et al. Design of graphene-based TiO2 photocatalysts—a review. Environ Sci Pollut Res, 2012, 19(9): 3676 doi: 10.1007/s11356-012-0939-4
    [27] Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2(7): 1487
    [28] Zhang H, Lv X, Li Y, et al. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4(1): 380 doi: 10.1021/nn901221k
    [29] Liang Y Y, Wang H L, Sanchez Casalongue H, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res, 2010, 3(10): 701 doi: 10.1007/s12274-010-0033-5
    [30] Wang J H, Liu R H, Yin X L. Adsorptive removal of tetracycline on graphene oxide loaded with titanium dioxide composites and photocatalytic regeneration of the adsorbents. J Chem Eng Data, 2018, 63(2): 409 doi: 10.1021/acs.jced.7b00816
    [31] Eder D, Windle A H. Carbon-inorganic hybrid materials: The carbon-nanotube/TiO2 interface. Adv Mater, 2008, 20(9): 1787 doi: 10.1002/adma.200702835
    [32] Zhou K F, Zhu Y H, Yang X L, et al. Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J Chem, 2011, 35(2): 353 doi: 10.1039/C0NJ00623H
    [33] Zhang Y P, Pan C X. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J Mater Sci, 2011, 46(8): 2622 doi: 10.1007/s10853-010-5116-x
    [34] Zhang H J, Xu P P, Du G D, et al. A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res, 2011, 4(3): 274 doi: 10.1007/s12274-010-0079-4
    [35] Hu A M, Zhang X, Oakes K D, et al. Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals. J Hazard Mater, 2011, 189(1-2): 278 doi: 10.1016/j.jhazmat.2011.02.033
    [36] Zhang J, Liu M, Dou Y C, et al. Role of alloying elements in the mechanical behaviors of an Mg–Zn–Zr–Er alloy. Metall And Mat Trans A, 2014, 45(12): 5499 doi: 10.1007/s11661-014-2526-4
    [37] Tan Q. Study on the Preparation and Application of TiO2 and Its Graphene-Based Composite [Dissertation]. Changsha: Hunan University, 2017

    譚奇. TiO2及其石墨烯基復合材料的制備與應用研究[學位論文]. 長沙: 湖南大學, 2017
  • 加載中
圖(7) / 表(2)
計量
  • 文章訪問數:  762
  • HTML全文瀏覽量:  403
  • PDF下載量:  51
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-03-30
  • 網絡出版日期:  2021-06-02
  • 刊出日期:  2022-07-06

目錄

    /

    返回文章
    返回