Effects of different mass ratios of tetrabutyl titanate on the microstructure and properties of GO?TiO2 composite materials
-
摘要: 以氧化石墨烯和鈦酸四丁酯為原料,采用一步水熱法制備氧化石墨烯/二氧化鈦(GO?TiO2)復合材料,研究不同鈦酸四丁酯含量對GO?TiO2復合材料組織和性能的影響規律。通過掃描電鏡(SEM)、X射線衍射(XRD)、紅外光譜(IR)、拉曼光譜(RS)、紫外?可見分光光度計(UV?vis)、熱重分析儀(TGA)等對復合材料的微觀形貌、物相組成、結構、吸光性和熱穩定性進行表征。研究結果表明,隨著鈦酸四丁酯含量的增加,有利于GO?TiO2復合材料的均勻分散,提高了GO?TiO2復合材料的吸光性和熱穩定性,但鈦酸四丁酯含量過高會使GO?TiO2復合材料分散性、吸光性和熱穩定性下降。當氧化石墨烯質量為320 mg、鈦酸四丁酯含量為100 mL時,反應生成的復合材料表面TiO2分散均勻,缺陷少,D峰與G峰的峰強比(ID/IG)值為0.91,氧化石墨烯和二氧化鈦復合程度高,復合材料中的TiO2吸收邊緣紅移至可見光范圍內,并且在440~800 nm可見光范圍內的吸收峰明顯增強,防腐防污能力增強,復合材料在800 ℃熱穩定性相比于氧化石墨烯提高了84.89%。Abstract: Graphene oxide/titanium dioxide (GO–TiO2) composites were prepared via a one-step hydrothermal synthesis method using graphene oxide and tetrabutyl titanate as raw materials. The effects of different mass ratios of tetrabutyl titanate on the microstructure and properties of the GO–TiO2 composites were studied. The microscopic morphology of these composites was observed through a scanning electron microscope, and the phase composition and structure were analyzed using X-ray diffraction, infrared spectroscopy, and Raman spectroscopy. The light absorption performance and thermal stability of the composites were analyzed via ultraviolet–visible spectroscopy and a thermal gravimetric analyzer. As the content of tetrabutyl titanate increases, the TiO2 generation increases; material surface area climbs up and then declines; surface defects decline and then climb up; absorption peak in the visible light range strengthens and then weakens; and degree of recombination climbs up and then weakens. When the content of tetrabutyl titanate exceeded 100 mL, the dispersibility of TiO2 in the GO–TiO2 composites became poor, thereby reducing the light absorption performance and thermal stability of the composites. When the GO was 320 mg and tetrabutyl titanate was 100 mL in the precursor solution, the obtained composite material exhibited superior surface properties, optical properties, and thermal stability. TiO2 was uniformly dispersed on the surface of the composite material. The composite material exhibited a high absorption intensity of visible light, high recombination, few surface defects, and an ID/IG ratio of 0.91. Characteristic peaks at 1573 and 1428 cm?1 were the strongest. The absorption edge of TiO2 in the composite was bathochromic shifted to the visible light range, and the absorption peak was significantly enhanced in the visible light range of 440–800 nm. The composite material exhibited good anticorrosion and antifouling abilities. The thermal stability of the composite was 84.89% higher than that of GO at 800°C. These composites have great prospects for development in the fields of anticorrosion and antifouling.
-
圖 2 不同鈦酸四丁酯含量的GO?TiO2的SEM和EDX圖. SEM:(a) GO; (b)1#;(c) 2#; (d)3#; (e)4#; (f) 5#; EDX : (g) 面掃; (h) 元素原子比
Figure 2. SEM and EDX images of GO–TiO2 composites with different mass ratios of tetrabuty titanate: SEM of (a) GO; (b) 1#; (c) 2#; (d) 3#; (e) 4#; (f) 5#; and EDS of (g) mapping; (h) atomic ratio of element
表 1 不同鈦酸四丁酯的含量
Table 1. Different mass ratios of tetrabutyl titanate
Number Graphene oxide /mg Tetrabutyl titanate/mL 1# 320 40 2# 320 60 3# 320 80 4# 320 100 5# 320 120 表 2 不同鈦酸四丁酯含量的GO?TiO2的ID/IG值
Table 2. ID/IG of GO–TiO2 composites with different mass ratios of tetrabutyl titanate
Number ID/IG GO 1.181 1# 1.069 2# 1.049 3# 1.002 4# 0.91 5# 0.948 www.77susu.com -
參考文獻
[1] Wang C Y. Hazards and protection of metal corrosion. Mech Manag Dev, 2012, 27(5): 111 doi: 10.3969/j.issn.1003-773X.2012.05.057王彩云. 金屬腐蝕的危害及防護. 機械管理開發, 2012, 27(5):111 doi: 10.3969/j.issn.1003-773X.2012.05.057 [2] Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China. Npj Mater Degrad, 2017, 1(1): 1 doi: 10.1038/s41529-017-0001-6 [3] Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect. Bull Chin Acad Sci, 2016, 31(12): 1326侯保榮, 張盾, 王鵬. 海洋腐蝕防護的現狀與未來. 中國科學院院刊, 2016, 31(12):1326 [4] Wang B. Preparation and Protective Mechanism of Nano-Ti Polymer Anti-Corrosion Coating [Dissertation]. Chongqing: Chongqing University, 2017王博. 鈦納米聚合物防腐功能涂層制備及防護機理研究[學位論文]. 重慶: 重慶大學, 2017 [5] Yang T, Cui Y N, Li Z S, et al. Enhancement of the corrosion resistance of epoxy coating by highly stable 3, 4, 9, 10-perylene tetracarboxylic acid functionalized graphene. J Hazard Mater, 2018, 357: 475 doi: 10.1016/j.jhazmat.2018.06.038 [6] Aneja K S, B?hm H L M, Khanna A S, et al. Functionalised graphene as a barrier against corrosion. FlatChem, 2017, 1: 11 doi: 10.1016/j.flatc.2016.08.003 [7] Zhang X, Xu J H, Li H L, et al. Study of corrosion protection anticorrosion coating with modified glass flake and polyphenylene sulfide. Paint Coat Ind, 2013, 43(7): 33 doi: 10.3969/j.issn.0253-4312.2013.07.008張昕, 許季海, 李紅良, 等. 聚苯硫醚摻雜改性玻璃鱗片防腐涂層耐腐蝕性研究. 涂料工業, 2013, 43(7):33 doi: 10.3969/j.issn.0253-4312.2013.07.008 [8] Chen W J, Shan J G, Wang W, et al. Coating technology and quality control of glass flake reinforced vinyl ester coating. Corros Prot, 2017, 38(2): 147 doi: 10.11973/fsyfh-201702013陳偉軍, 單景剛, 王維, 等. 乙烯酯玻璃鱗片涂層的涂裝技術及質量控制. 腐蝕與防護, 2017, 38(2):147 doi: 10.11973/fsyfh-201702013 [9] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197 doi: 10.1038/nature04233 [10] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896 [11] Liu P P, Liu S Q, Gao H Y, et al. Preparation and properties of hydroxyapatite aerogel composite phase change materials. Chin J Eng, 2020, 42(1): 120劉盼盼, 劉斯奇, 高鴻毅, 等. 羥基磷灰石氣凝膠復合相變材料的制備及其性能. 工程科學學報, 2020, 42(1):120 [12] Wang Y X, Myers M, Staser J A. Electrochemical UV sensor using carbon quantum dot/graphene semiconductor. J Electrochem Soc, 2017, 165(4): H3001 [13] Shui L, Zhang K, Yu H. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al-15Si-4Cu-Mg matrix composites. Chin J Eng, 2019, 41(9): 1162水麗, 張凱, 于宏. 石墨烯含量對石墨烯/Al-15Si-4Cu-Mg復合材料微觀組織和力學性能的影響. 工程科學學報, 2019, 41(9):1162 [14] Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem Rev, 2012, 112(11): 6027 doi: 10.1021/cr300115g [15] Shumaila, Khan S, Khan Z M S H, et al. Facile synthesis of highly conducting polypyrrole and reduced graphene oxide nanocomposites for low-turn-on electron field emitters. J Phys Chem Solids, 2020, 143: 109522 doi: 10.1016/j.jpcs.2020.109522 [16] Tavakol M, Montazeri A, Aboutalebi S H, et al. Mechanical properties of graphene oxide: The impact of functional groups. Appl Surf Sci, 2020, 525: 146554 doi: 10.1016/j.apsusc.2020.146554 [17] Suvarna K S, Binitha N N. Graphene preparation by jaggery assisted ball-milling of graphite for the adsorption of Cr(VI). Mater Today:Proc, 2020, 25: 236 doi: 10.1016/j.matpr.2020.01.209 [18] Sun Y, Chen L, Yu J M, et al. Lightweight graphene oxide-based sponges with high compressibility and durability for dye adsorption. Carbon, 2020, 160: 54 doi: 10.1016/j.carbon.2020.01.009 [19] Yang N, Yang T, Wang W, et al. Polydopamine modified polyaniline-graphene oxide composite for enhancement of corrosion resistance. J Hazard Mater, 2019, 377: 142 doi: 10.1016/j.jhazmat.2019.05.063 [20] Chauhan D S, Quraishi M A, Ansari K R, et al. Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario. Prog Org Coat, 2020, 147: 105741 doi: 10.1016/j.porgcoat.2020.105741 [21] Chang C I, Chang K H, Shen H H, et al. A unique two-step Hummers method for fabricating low-defect graphene oxide nanoribbons through exfoliating multiwalled carbon nanotubes. J Taiwan Inst Chem Eng, 2014, 45(5): 2762 doi: 10.1016/j.jtice.2014.05.030 [22] O'Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737 doi: 10.1038/353737a0 [23] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37 doi: 10.1038/238037a0 [24] Braun J H, Baidins A, Marganski R E. TiO2 pigment technology: A review. Prog Org Coat, 1992, 20(2): 105 doi: 10.1016/0033-0655(92)80001-D [25] Yao L R, Dong L, Li X J, et al. Photocatalytic performance of TiO2-intercalated graphene oxide toward methylene blue. Shanghai Text Sci Technol, 2018, 46(11): 58姚理榮, 董莉, 李小娟, 等. TiO2插層氧化石墨烯降解亞甲基藍性能研究. 上海紡織科技, 2018, 46(11):58 [26] Morales-Torres S, Pastrana-Martínez L M, Figueiredo J L, et al. Design of graphene-based TiO2 photocatalysts—a review. Environ Sci Pollut Res, 2012, 19(9): 3676 doi: 10.1007/s11356-012-0939-4 [27] Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2(7): 1487 [28] Zhang H, Lv X, Li Y, et al. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4(1): 380 doi: 10.1021/nn901221k [29] Liang Y Y, Wang H L, Sanchez Casalongue H, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res, 2010, 3(10): 701 doi: 10.1007/s12274-010-0033-5 [30] Wang J H, Liu R H, Yin X L. Adsorptive removal of tetracycline on graphene oxide loaded with titanium dioxide composites and photocatalytic regeneration of the adsorbents. J Chem Eng Data, 2018, 63(2): 409 doi: 10.1021/acs.jced.7b00816 [31] Eder D, Windle A H. Carbon-inorganic hybrid materials: The carbon-nanotube/TiO2 interface. Adv Mater, 2008, 20(9): 1787 doi: 10.1002/adma.200702835 [32] Zhou K F, Zhu Y H, Yang X L, et al. Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J Chem, 2011, 35(2): 353 doi: 10.1039/C0NJ00623H [33] Zhang Y P, Pan C X. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J Mater Sci, 2011, 46(8): 2622 doi: 10.1007/s10853-010-5116-x [34] Zhang H J, Xu P P, Du G D, et al. A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res, 2011, 4(3): 274 doi: 10.1007/s12274-010-0079-4 [35] Hu A M, Zhang X, Oakes K D, et al. Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals. J Hazard Mater, 2011, 189(1-2): 278 doi: 10.1016/j.jhazmat.2011.02.033 [36] Zhang J, Liu M, Dou Y C, et al. Role of alloying elements in the mechanical behaviors of an Mg–Zn–Zr–Er alloy. Metall And Mat Trans A, 2014, 45(12): 5499 doi: 10.1007/s11661-014-2526-4 [37] Tan Q. Study on the Preparation and Application of TiO2 and Its Graphene-Based Composite [Dissertation]. Changsha: Hunan University, 2017譚奇. TiO2及其石墨烯基復合材料的制備與應用研究[學位論文]. 長沙: 湖南大學, 2017 -