Solution treatment effect on precipitates, microstructure, and properties of S32707 hyper-duplex stainless steel
-
摘要: 通過Thermo-Calc熱力學計算、OM和FE-SEM觀察、力學性能和腐蝕性能試驗對不同固溶溫度下的特超級雙相不銹鋼進行分析和研究。結果表明:σ相和非平衡氮化物是固溶水冷組織中的主要析出相,當固溶溫度低于1050 ℃時,σ相優先沿雙相界面析出,顯著降低雙相不銹鋼的沖擊韌性;當固溶溫度高于1100 ℃,非平衡氮化物開始在鐵素體晶粒內部析出,且隨著固溶溫度的升高,非平衡氮化物析出數量增加。這是由于固溶水冷過程中氮在鐵素體中的溶解度快速降低,過飽和的氮來不及擴散到相鄰奧氏體中,只能以氮化物的形式析出。隨固溶溫度升高,鐵素體含量增加,奧氏體含量降低,實驗鋼的強度增加,沖擊韌性降低。在1080~1120 ℃之間固溶時,雙相比例接近1∶1,S32707特超級雙相不銹鋼具有優良的綜合力學性能和耐晶間腐蝕性能。Abstract: Duplex stainless steel (DSS) has been widely used in some harsh environments, such as flue gas shedding and seawater desalination, because of its high strength and corrosion resistance. These excellent properties rely on a high alloy content (Cr, Mo, N, etc.) and perfect dual-phase equilibrium. The dual-phase equilibrium mainly includes dual-phase proportion balance, properties balance, and absence of clear secondary phase in the solid solution structure. As one of the main developmental directions of DSS, hyper-duplex stainless steel (HDSS) has attracted much attention in recent years. In this paper, the effects of solution treatment on precipitates, microstructure, and properties of S32707 HDSS were studied by Thermo-Calc thermodynamic calculation, OM and FE-SEM observation, mechanical properties, and corrosion property tests. The results showed that σ phase and non-equilibrium nitrides were the main precipitates of solution-treated HDSS. When the solution temperature was lower than 1050 ℃, the σ phase precipitated preferentially along the dual-phase boundaries, which significantly reduced the impact toughness of HDSS. When the solution temperature was higher than 1100 ℃, non-equilibrium nitrides precipitated in ferrite grains, and the number of non-equilibrium nitrides increased with an increase in solution temperature. The reason for the non-equilibrium nitride precipitation was that the nitrogen content in the ferrite increased with an increase in temperature. This led to the supersaturation of nitrogen in the ferrite grains during the rapid cooling process. Under such conditions, the finely dispersed non-equilibrium nitrides precipitated in the ferrite grains. With increasing solution temperature, the content of the ferrite increased, the content of austenite decreased, the strength increased, and the impact toughness decreased. The optimal solution temperature of HDSS was 1080?1120 ℃. Under this condition, the ratio of duplex was close to 1∶1, and the S32707 hyper duplex stainless steel presented excellent comprehensive mechanical properties and intergranular corrosion resistance.
-
圖 3 不同固溶溫度下析出相、組織光鏡形貌及雙相統計結果。(a)1000 ℃;(b)1050 ℃;(c)1100 ℃;(d)1150 ℃;(e)1200 ℃;(f)1250 ℃;(g)1300 ℃;(h)雙相統計結果
Figure 3. OM images of precipitates and microstructure at different annealing temperatures and results of dual-phase volume fractions: (a) 1000 ℃; (b) 1050 ℃; (c) 1100 ℃; (d) 1150 ℃; (e) 1200 ℃; (f) 1250 ℃; (g) 1300 ℃; (h) results of dual-phase volume fractions at different annealing temperatures
表 1 實驗鋼化學成分(質量分數)
Table 1. Chemical composition of the tested steel
% C Si Mn Cr Mo Ni N Cu Co Fe 0.01 0.37 1.18 27.42 4.64 6.50 0.34 0.54 0.77 Bal. 表 2 不同固溶溫度下實驗鋼力學性能
Table 2. Mechanical properties of experimental steel at different annealing temperatures
Annealing temperature /
℃Tensile
strength /
MPaYield
strength /
MPaElongation/
%Impact
energy /
J1050 944 701 31 153 1080 938 719 39 232 1100 941 724 38 223 1120 936 729 35 219 1150 940 736 35 195 1200 953 757 30 163 ASTM A790/A790M ≥920 ≥700 ≥25 www.77susu.com -
參考文獻
[1] Feng H, Zhou X Y, Liu H, et al. Development and trend of hyper duplex stainless steels. J Iron Steel Res, 2015, 27(4): 1豐涵, 周曉玉, 劉虎, 等. 特超級雙相不銹鋼的發展現狀及趨勢. 鋼鐵研究學報, 2015, 27(4):1 [2] Chail G, Kangas P. Super and hyper duplex stainless steels: structures, properties and applications. Procedia Struct Integr, 2016, 2: 1755 doi: 10.1016/j.prostr.2016.06.221 [3] Wu J. Duplex Stainless Steel. Beijing: Metallurgical Industry Press, 1999吳玖. 雙相不銹鋼. 北京: 冶金工業出版社, 1999 [4] Yamamoto R, Yakuwa H, Miyasaka M, et al. Effects of the α/γ-phase ratio on the corrosion behavior of cast duplex stainless steel. Corrosion, 2020, 76(9): 815 doi: 10.5006/3464 [5] Fargas G, Anglada M, Mateo A. Effect of the annealing temperature on the mechanical properties, formability and corrosion resistance of hot-rolled duplex stainless steel. J Mater Process Technol, 2009, 209(4): 1770 doi: 10.1016/j.jmatprotec.2008.04.026 [6] Chan K W, Tjong S C. Effect of secondary phase precipitation on the corrosion behavior of duplex stainless steels. Materials (Basel) , 2014, 7(7): 5268 doi: 10.3390/ma7075268 [7] He L, Wirian L, Singh P M. Effects of isothermal aging on the microstructure evolution and pitting corrosion resistance of lean duplex stainless steel UNS S32003. Metall Mater Trans A, 2019, 50(5): 2103 doi: 10.1007/s11661-019-05189-x [8] Zhang B B, Jiang Z H, Li H B, et al. Precipitation behavior and phase transformation of hyper duplex stainless steel UNS S32707 at nose temperature. Mater Charact, 2017, 129: 31 doi: 10.1016/j.matchar.2017.04.018 [9] Ebrahimi N, Momeni M, Moayed M H, et al. Correlation between critical pitting temperature and degree of sensitisation on alloy 2205 duplex stainless steel. Corros Sci, 2011, 53(2): 637 doi: 10.1016/j.corsci.2010.10.009 [10] Feng Z H, Li J X, Li J Y, et al. Influence of the sample position of the cast on the thermoplasticity of lean duplex stainless steel 2101. Chin J Eng, 2017, 39(9): 1364馮志慧, 李建興, 李靜媛, 等. 鑄坯取樣位置對經濟型雙相不銹鋼2101熱塑性的影響. 工程科學學報, 2017, 39(9):1364 [11] Shin B H, Kim D, Park S, et al. Precipitation condition and effect of volume fraction on corrosion properties of secondary phase on casted super-duplex stainless steel UNS S32750. Anti Corros Methods Mater, 2019, 66(1): 61 doi: 10.1108/ACMM-06-2018-1958 [12] Xu J P, Wu H M, Tang L, et al. The microstructure and performance features of typical duplex stainless steels and their impact on fabrication process // The 6th China International Duplex Stainless Steel Conference 2018. Beijing, 2018: 52徐見平, 吳漢民, 湯磊, 等. 幾種典型雙相不銹鋼組織及性能特點及其對加工過程的影響 // 2018年第六屆中國國際雙相不銹鋼大會. 北京, 2018: 52 [13] Huang S, Song Z G, Zheng W J, et al. Influence of solution temperature on microstructure and mechanical properties of 00Cr27Ni7Mo5N. Iron Steel, 2011, 46(12): 71黃盛, 宋志剛, 鄭文杰, 等. 固溶處理對00Cr27Ni7Mo5N不銹鋼的組織及力學性能的影響. 鋼鐵, 2011, 46(12):71 [14] Shen W, Wang F M, Yang Z B, et al. Effect of ferrite proportion and precipitates on dual-phase corrosion of S32750 super duplex stainless steel with different annealing temperatures. Steel Res Int, 2021: 2000568 [15] Xu H J, Hu W Q, Kang C, et al. Effect of high temperature heat treatment on microstructure and properties of lean duplex stainless steel 2101. Trans Mater Heat Treat, 2021, 42(2): 74徐海健, 胡萬卿, 康超, 等. 高溫熱處理對節約型2101雙相不銹鋼組織性能的影響. 材料熱處理學報, 2021, 42(2):74 [16] Rajkumar M, Babu S P K, Nagaraj T A. Intergranular corrosion characteristics of niobium stabilized 27Cr?7Ni?Mo?W?N cast hyper duplex stainless steel. Mater Today:Proc, 2020, 27: 2551 doi: 10.1016/j.matpr.2019.10.134 [17] Li H B, Zhou E Z, Zhang D W, et al. Microbiologically influenced corrosion of 2707 hyper-duplex stainless steel by marine pseudomonas aeruginosa biofilm. Sci Rep, 2016, 6: 20190 doi: 10.1038/srep20190 [18] Kim D H, Kim N H, Lee H W. Corrosion and cracking characteristics upon aging of hyper duplex stainless steel weld. Mater Sci Technol, 2020, 36(7): 783 doi: 10.1080/02670836.2020.1743575 [19] Marques I J, Silva F J, Santos T F A. Rapid precipitation of intermetallic phases during isothermal treatment of duplex stainless steel joints produced by friction stir welding. J Alloys Compd, 2020, 820: 153170 doi: 10.1016/j.jallcom.2019.153170 [20] Zhang D, Wen P, Yin B Z, et al. Temperature evolution, phase ratio and corrosion resistance of duplex stainless steels treated by laser surface heat treatment. J Manuf Process, 2021, 62: 99 doi: 10.1016/j.jmapro.2020.12.040 [21] Pettersson N, Pettersson R F A, Wessman S. Precipitation of chromium nitrides in the super duplex stainless steel 2507. Metall Mater Trans A, 2015, 46(3): 1062 doi: 10.1007/s11661-014-2718-y [22] Bettini E, Kivis?kk U, Leygraf C, et al. Study of corrosion behavior of a 2507 super duplex stainless steel: Influence of quenched-in and isothermal nitrides. Int J Electrochem Sci, 2014, 9(1): 61 [23] Chen Y L, Zhang T R, Wang Y D, et al. Effects of O, N and Ni contents on hot plasticity of 0Cr25Ni7Mo4N duplex stainless steel. Acta Metall Sin, 2014, 50(8): 905 doi: 10.11900/0412.1961.2014.00057陳雨來, 張泰然, 王一德, 等. O, N和Ni含量對0Cr25Ni7Mo4N雙相不銹鋼熱軋塑性的影響. 金屬學報, 2014, 50(8):905 doi: 10.11900/0412.1961.2014.00057 [24] Deng B, Jiang Y M, Gao J, et al. Effect of annealing treatment on microstructure evolution and the associated corrosion behavior of a super-duplex stainless steel. J Alloys Compd, 2010, 493(1-2): 461 doi: 10.1016/j.jallcom.2009.12.127 [25] Liang T. The Precipitation Mechanism of σ Phase in Duplex Stainless Steel for Nuclear Power Station [Dissertation]. Beijing: University of Chinese Academy of Sciences, 2013梁田. 核電用雙相不銹鋼中σ相析出機制研究[學位論文]. 北京: 中國科學院大學, 2013 [26] Bai Q Q, Zhang Z H. Effect of solution treatment temperature on phase ration and mechanical properties of 2507 super duplex stainless steel. Heat Treat Met, 2019, 44(9): 123白青青, 張志宏. 固溶處理溫度對2507超級雙相不銹鋼相比例及力學性能的影響. 金屬熱處理, 2019, 44(9):123 [27] Song Z G, Chen B, Zheng W J, et al. Influence of solution temperature on microstructure and mechanical property of 00Cr22Ni5Mo3N. J Iron Steel Res, 2004, 16(6): 47 doi: 10.3321/j.issn:1001-0963.2004.06.010宋志剛, 陳斌, 鄭文杰, 等. 固溶溫度對00Cr22Ni5 Mo3N鋼組織及力學性能的影響. 鋼鐵研究學報, 2004, 16(6):47 doi: 10.3321/j.issn:1001-0963.2004.06.010 [28] Ha H Y, Lee T H, Lee C G, et al. Understanding the relation between pitting corrosion resistance and phase fraction of S32101 duplex stainless steel. Corros Sci, 2019, 149: 226 doi: 10.1016/j.corsci.2019.01.001 [29] Zheng J C, Pan C, Zhang J T, et al. Effect of manganese addition on resistance to pitting corrosion of duplex stainless steel S32205. Chin J Eng, 2019, 41(2): 246鄭建超, 潘超, 張建濤, 等. Mn對2205雙相不銹鋼耐點蝕性能的影響. 工程科學學報, 2019, 41(2):246 [30] Raj P N, Navaneethkrishnan P K, Sekar K, et al. Comparative study of mechanical, corrosion and erosion—corrosion properties of cast hyper-duplex and super-duplex stainless steels. Int J Miner Metall Mater, 2020, 27(7): 954 doi: 10.1007/s12613-020-1984-5 [31] Zhu M, Zhang Q, Yuan Y F, et al. Effect of microstructure and passive film on corrosion resistance of 2507 super duplex stainless steel prepared by different cooling methods in simulated marine environment. Int J Miner Metall Mater, 2020, 27(8): 1100 doi: 10.1007/s12613-020-2094-0 [32] Zhu M, Zhu T, Chen M, et al. Corrosion behavior of 2507 duplex stainless steel in simulated SO2-Polluted seawater. Chin J Eng, 2018, 40(5): 587朱敏, 朱濤, 陳明, 等. 2507雙相不銹鋼在SO2污染模擬海水中的腐蝕行為. 工程科學學報, 2018, 40(5):587 -