Characteristic modification of coal-based activated carbon and its methane adsorption capacity
-
摘要: 針對無煙煤制備成的煤基活性炭,采用酸式改性、堿式改性和聯合改性的方法對其進行改性處理。通過低溫液氮吸附實驗、傅里葉紅外光譜技術、高壓甲烷吸附實驗,分析了煤基活性炭的表面物理、化學結構、甲烷的吸附能力。借助Langmuir吸附等溫模型、Freundlich模型進行數據擬合,研究了吸附熱力學和動力學特征。結果表明,聯合改性后的煤基活性炭比表面積和孔容均明顯增大,其中比表面積增大66.66%,總孔容增大30.89%;煤基活性炭的甲烷吸附能力明顯提高,甲烷吸附量提升25.686%。煤基活性炭的孔隙結構和表面官能團共同決定了其對甲烷的吸附作用,且較于孔隙結構,表面官能團的極性對甲烷吸附量起主要作用。Abstract: Methane is an important high-quality clean energy that mainly comes from the decomposition of organic waste, natural gas, fossil fuel extracts, etc. Recycling it from a gaseous mixture is beneficial for environmental protection and energy utilization and development. The new coal-based activated carbon is a widely used storage material for methane because of its economic benefit and practicality; thus, coal-based activated carbon modification is greatly significant. This research aims to further reveal the methane adsorption mechanism of coal-based activated carbon by studying the influence of acidic, basic, and combined modifications on methane adsorption and seek a more efficient means of coal-based activated carbon modification. The coal-based activated carbon made from anthracite coal was processed through acidic, basic, and combined modifications. In addition, the physical and chemical structures of the coal-based activated carbon surface and the adsorption ability of methane were precisely analyzed through low-temperature liquid nitrogen adsorption, Fourier infrared spectroscopy, and high-pressure methane adsorption experiments. The characteristics of adsorption thermodynamics and kinetics were also determined by using the Langmuir adsorption isotherm model and the Freundlich model for data fitting. The results show a significant increase in the specific surface area and pore volume of the coal-based activated carbon after combined modification. The specific surface area and the total pore volume increases by 66.66% and 30.89%, respectively. The methane adsorption capacity of the coal-based activated carbon also significantly improved after combined modification. Methane adsorption increases by 25.686%. In addition, both the pore structure and the contained functional groups on the surface jointly determine the methane adsorption, which is mainly affected by the polarity of the surface functional groups rather than the pore structure.
-
圖 1 煤基活性炭低溫液氮吸附脫附等溫線. (a)原始煤基活性炭; (b)酸式改性煤基活性炭; (c)堿式改性煤基活性炭; (d)聯合改性煤基活性炭
Figure 1. Liquid N2 adsorption–desorption isotherms of coal-based activated carbons: (a) raw coal-based activated carbon; (b) acid modified coal-based activated carbon; (c) basic modified coal-based activated carbon; (d) combined modified coal-based activated carbon
圖 2 煤基活性炭紅外光譜譜圖. (a)原始煤基活性炭; (b)酸式改性煤基活性炭; (c)堿式改性煤基活性炭; (d)聯合改性煤基活性炭
Figure 2. FT-IR spectra of coal-based activated carbons: (a) raw coal-based activated carbon; (b) acid modified coal-based activated carbon; (c) basic modified coal-based activated carbon; (d) combined modified coal-based activated carbon
圖 3 煤基活性炭甲烷吸脫附等溫曲線. (a) 原始煤基活性炭; (b)酸式改性煤基活性炭; (c)堿式改性煤基活性炭; (d)聯合改性煤基活性炭
Figure 3. Adsorption–desorption isotherms of coal-based activated carbons: (a) raw coal-based activated carbon; (b) acid modified coal-based activated carbon; (c) basic modified coal-based activated carbon; (d) combined modified coal-based activated carbon
圖 4 煤基活性炭甲烷吸附Langmuir等溫線. (a) 原始煤基活性炭; (b) 酸式改性煤基活性炭; (c)堿式改性煤基活性炭; (d) 聯合改性煤基活性炭
Figure 4. Adsorption Langmuir isotherms of coal-based activated carbons: (a) raw coal-based activated carbon; (b) acid modified coal-based activated carbon; (c) basic modified coal-based activated carbon; (d) combined modified coal-based activated carbon
圖 5 煤基活性炭甲烷吸附Freundlich等溫線. (a)原始煤基活性炭; (b)酸式改性煤基活性炭; (c)堿式改性煤基活性炭; (d)聯合改性煤基活性炭
Figure 5. Adsorption Freundlich isotherms of coal-based activated carbons: (a) raw coal-based activated carbon; (b) acid modified coal-based activated carbon; (c) basic modified coal-based activated carbon; (d) combined modified coal-based activated carbon
表 1 煤基活性炭的孔隙結構參數
Table 1. Pore parameters of different coal-based activated carbons
Sample type code SBET/(m2?g?1) Vt/(cm3?g?1) Vmic /(cm3?g?1) Vmes/(cm3?g?1) Vmic/ Vt DV/nm 1 11.8887 0.0259 0.0057 0.0263 0.220 8.7142 H 20.5609 0.0475 0.0082 0.0477 0.173 9.2408 N 9.0909 0.0210 0.0046 0.0216 0.219 9.2400 H-N 19.8141 0.0339 0.0081 0.0319 0.239 6.8436 表 2 煤基活性炭等溫吸附模型參數
Table 2. Parameters of the coal-based activated carbon isotherm adsorption model
Sample type code Langmuir model parameters Freundlich model parameters a/
(mL?g?1)b/
MPa?1R2 k n R2 1 24.5483 1.429 0.99883 5.8596 2.8106 0.99234 H 21.5332 0.791 0.99885 3.1350 2.1792 0.99316 N 27.5847 1.299 0.99918 6.3002 2.7842 0.99013 H-N 30.8537 1.734 0.99917 8.4315 3.0915 0.98829 表 3 煤基活性炭吸附熱力學參數
Table 3. Adsorption thermodynamic parameters of different coal-based activated carbons
Sample type code KP $ \Delta {G^{\ominus}} $/(kJ·mol?1) 1 143.936 ?12.952 H 12.061 ?6.490 N 168.098 ?13.357 H-N 728.509 ?17.179 表 4 煤基活性炭吸附熱力學參數
Table 4. Adsorption kinetic parameters of different coal-based activated carbons
Sample type code K1/(min?1) q/(mL·g?1) R2 1 0.25627 22.7675 0.9897 H 0.21020 18.2642 0.9959 N 0.20903 25.6990 0.9910 H-N 0.28469 28.6625 0.9942 www.77susu.com -
參考文獻
[1] Xie H F, Liu Y C, Feng B M, et al. The progress in methane storage materials. J Dalian Univ, 2014, 35(3): 43 doi: 10.3969/j.issn.1008-2395.2014.03.011謝會芳, 劉延純, 馮寶民, 等. 甲烷存儲材料的研究進展. 大連大學學報, 2014, 35(3):43 doi: 10.3969/j.issn.1008-2395.2014.03.011 [2] Wei D Y, Du C F, Li Y X, et al. Experiment on preparation of calcium silicate board based on a mixed gel system of carbide slag and coal-based solid waste. Chin J Eng, 2019, 41(1): 53魏丁一, 杜翠鳳, 李彥鑫, 等. 電石渣-煤基固廢混合膠凝體系制硅酸鈣板的試驗. 工程科學學報, 2019, 41(1):53 [3] Wu Y H, Zhang B, Shen G L, et al. Production of bituminous coal-based activated carbon and the property on the removal of methyl orange. Chem Ind Eng Prog, 2013, 32(Suppl 1): 88吳永紅, 張兵, 沈國良, 等. 煙煤基活性炭的制備及脫除甲基橙性能. 化工進展, 2013, 32(增刊1): 88 [4] Xu J C, Wen H, Zhang X H, et al. Determination of coal spontaneous combustion danger zones around roadway in the fully mechanized top-coal caving face. J Univ Sci Technol Beijing, 2003, 25(1): 9 doi: 10.3321/j.issn:1001-053X.2003.01.003徐精彩, 文虎, 張辛亥, 等. 綜放面巷道煤層自燃危險區域判定方法. 北京科技大學學報, 2003, 25(1):9 doi: 10.3321/j.issn:1001-053X.2003.01.003 [5] Zhang J L, Yang T J, Gao Z K, et al. A new method to determing the decomposition heat of coal during PCI for BF. J Univ Sci Technol Beijing, 2001, 23(4): 308 doi: 10.3321/j.issn:1001-053X.2001.04.006張建良, 楊天鈞, 高征鎧, 等. 高爐噴煤過程煤粉分解熱確定的新方法. 北京科技大學學報, 2001, 23(4):308 doi: 10.3321/j.issn:1001-053X.2001.04.006 [6] Xie W. Application status and development trend of coal-based activated carbon in China. Coal Sci Technol, 2017, 45(10): 16解煒. 我國煤基活性炭的應用現狀及發展趨勢. 煤炭科學技術, 2017, 45(10):16 [7] Zhao J Y, Zhang Y L, Deng J, et al. Key functional groups affecting the release of gaseous products during spontaneous combustion of coal. Chin J Eng, 2020, 42(9): 1139趙婧昱, 張永利, 鄧軍, 等. 影響煤自燃氣體產物釋放的主要活性官能團. 工程科學學報, 2020, 42(9):1139 [8] Huan X, Zhang X B, Wei H W. Research on parameters of adsorption potential via methane adsorption of different types of coal. J China Coal Soc, 2015, 40(8): 1859郇璇, 張小兵, 韋歡文. 基于不同類型煤吸附甲烷的吸附勢重要參數探討. 煤炭學報, 2015, 40(8):1859 [9] Yoshizawa N, Yamada Y, Furuta T, et al. Coal-based activated carbons prepared with organometallics and their mesoporous structure. Energy Fuels, 1997, 11(2): 327 doi: 10.1021/ef9601475 [10] Huang L H, Hua J. Effect of surface property of activated carbon on denitration and sulfur resistance performance of supported cerium based catalyst. J Funct Mater, 2020, 51(12): 12174 doi: 10.3969/j.issn.1001-9731.2020.12.026黃利華, 華堅. 活性炭表面性能對負載的鈰基催化劑脫硝性能和抗硫性能的影響. 功能材料, 2020, 51(12):12174 doi: 10.3969/j.issn.1001-9731.2020.12.026 [11] Li Y, Li X Y, Lu Z L, et al. Removal of elemental mercury from flue gas by modified coal-based activated carbon. J Eng Thermophys, 2020, 41(4): 1035李揚, 李向陽, 魯子龍, 等. 改性煤基活性炭對燃煤煙氣中汞的脫除. 工程熱物理學報, 2020, 41(4):1035 [12] Tang J W, Shi X L, Zhang C H, et al. Enhanced adsorption treatment of landfill leachate using coal-based activated carbon modified by nitric acid. J Min Sci Technol, 2019, 4(3): 269唐佳偉, 師學璐, 張春暉, 等. 硝酸改性煤基活性炭吸附處理垃圾滲濾液. 礦業科學學報, 2019, 4(3):269 [13] Xie Q, Li L T, Li J, et al. Surface modification of activated carbon by low temperature oxygen/nitrogen plasma. J China Univ Min Technol, 2005, 34(6): 688 doi: 10.3321/j.issn:1000-1964.2005.06.002解強, 李蘭亭, 李靜, 等. 活性炭低溫氧/氮等離子體表面改性的研究. 中國礦業大學學報, 2005, 34(6):688 doi: 10.3321/j.issn:1000-1964.2005.06.002 [14] Qiu J S. Application of low temperature plasma in surface treatment of carbon materials. New Carbon Mater, 2001, 16(3): 58 doi: 10.3321/j.issn:1007-8827.2001.03.013邱介山. 低溫等離子體技術在炭材料改性方面的應用. 新型炭材料, 2001, 16(3):58 doi: 10.3321/j.issn:1007-8827.2001.03.013 [15] Xie Q, Zhang X L, Liang D C, et al. Directional preparation of coal-based activated carbon: Principles, approaches and applications. Coal Sci Technol, 2021, 49(1): 100解強, 張香蘭, 梁鼎成, 等. 煤基活性炭定向制備: 原理·方法·應用. 煤炭科學技術, 2021, 49(1):100 [16] Chen J P, Wu S. Acid/Base-treated activated carbons: Characterization of functional groups and metal adsorptive properties. Langmuir, 2004, 20(6): 2233 doi: 10.1021/la0348463 [17] Huang Z H, Kang F Y, Wu H, et al. Adsorption of benzene and methyl ethyl ketone vapors at low concentration by wet oxidized porous carbons. J Tsinghua Univ (Sci Technol) , 2000, 40(10): 111 doi: 10.3321/j.issn:1000-0054.2000.10.030黃正宏, 康飛宇, 吳慧, 等. 濕氧化改性多孔炭對低濃度苯和丁酮蒸汽的吸附. 清華大學學報(自然科學版), 2000, 40(10):111 doi: 10.3321/j.issn:1000-0054.2000.10.030 [18] Zhang X B, Huan X, Zhang H, et al. Microstructure and methane adsorption of coal-based activated carbons with different coal body structures. J China Univ Min Technol, 2017, 46(1): 155張小兵, 郇璇, 張航, 等. 不同煤體結構煤基活性炭微觀結構與甲烷吸附性能. 中國礦業大學學報, 2017, 46(1):155 [19] Kong J, Lin B Q, Zhu C J, et al. Research on surface and pore structure properties of modified coal activated carbon. Coal Technol, 2016, 35(8): 191孔佳, 林柏泉, 朱傳杰, 等. 改性煤基活性炭表面形貌及孔隙結構特性. 煤炭技術, 2016, 35(8):191 [20] Shan X M, Zhang W H, Du M H, et al. Effect of wet oxidation and heat-treatment on the SO2 adsorption capacity for coal-based activated carbon. J China Coal Soc, 2004, 29(2): 208 doi: 10.3321/j.issn:0253-9993.2004.02.019單曉梅, 張文輝, 杜銘華, 等. 濕氧化和熱處理對煤基活性炭吸附SO2的影響. 煤炭學報, 2004, 29(2):208 doi: 10.3321/j.issn:0253-9993.2004.02.019 [21] Contreras M, Lagos G, Escalona N, et al. On the methane adsorption capacity of activated carbons: In search of a correlation with adsorbent properties. J Chem Technol Biotechnol, 2009, 84(11): 1736 doi: 10.1002/jctb.2239 [22] Zhang Y C, Fu H H, Wang F J, et al. Influence of pore structure of coal-based activated carbon on separation of low-concentration gas. Saf Coal Mines, 2020, 51(12): 23張亞潮, 付航航, 王福軍, 等. 基于煤基活性炭孔隙結構的礦井低濃度瓦斯吸附分離影響研究. 煤礦安全, 2020, 51(12):23 [23] Feng Y Y, Huang L H, Chu W. Surface modification of coal-based activated carbon and its effects on methane adsorption. J China Coal Soc, 2011, 36(12): 2080馮艷艷, 黃利宏, 儲偉. 表面改性對煤基活性炭及其甲烷吸附性能的影響. 煤炭學報, 2011, 36(12):2080 [24] Ma D M, Li L X, Li X P, et al. Contrastive experiment of adsorption-desorption between CH4 and CO2 in Coal Seam 4 of Dafosi Coal Mine. J China Coal Soc, 2014, 39(9): 1938馬東民, 李來新, 李小平, 等. 大佛寺井田4號煤CH4與CO2吸附解吸實驗比較. 煤炭學報, 2014, 39(9):1938 [25] Li X W, Ma X, Zhu P F, et al. Characteristics of coal physicochemical structure and its effect on thermodynamic of gas adsorption. Saf Coal Mines, 2021, 52(3): 1李曉文, 馬旭, 朱鵬飛, 等. 煤體理化結構特征及其對瓦斯吸附熱力學的影響. 煤礦安全, 2021, 52(3):1 [26] Zhang Z Q, Zhang Y P. Method of calculating the thermodynamic parametres from some isothermal absorption models. J Northwest Agric Univ, 1998, 26(2): 99張增強, 張一平. 幾個吸附等溫模型熱力學參數的計算方法. 西北農業大學學報, 1998, 26(2):99 [27] Huan X. Activated Carbon was Prepared by Coal and the Effect of Surface Modification on Methane Adsorption [Dissertation]. Jiaozuo: Henan Polytechnic University, 2015郇璇. 煤改制活性炭及表面改性對甲烷吸附的影響[學位論文]. 焦作: 河南理工大學, 2015 -