Time-lag rumor propagation model and rumor-refuting strategy of SEIRD under COVID-19
-
摘要: 隨著互聯網的發展與新冠疫情的蔓延,疫情相關謠言的流量與受關注度大大提高,使其能夠迅速發酵并造成極其不良的社會影響。由此可見,研究網絡謠言的傳播過程并給出遏制網絡謠言傳播的策略有著重大意義。在傳統網絡謠言傳播SIR(Susceptible, infected, recovered)模型的基礎上加入潛在信謠者與鐵桿信謠者群體,引入政府辟謠機制,同時考慮辟謠者與政府辟謠的滯后性以及高等教育普及率對謠言傳播及辟謠過程的影響,建立了SEIRD(Susceptible, exposed, infected, recovered, die-hard-infected)謠言傳播模型,以研究一個網絡謠言自誕生起,不知情者、潛在信謠者、信謠者、鐵桿信謠者以及醒悟者這五類網民比例在有無政府辟謠、辟謠是否具有滯后性、以及網民不同比例高等教育率下的變化規律,并通過實驗仿真驗證了模型的有效性,為控制網絡輿情傳播提供參考。此外,還提出了用于衡量辟謠者群體及政府權威機構辟謠能力的辟謠系數。研究結果表明,提高高等教育普及率對于減緩謠言傳播、降低謠言傳播峰值有著顯著效果;政府權威機構辟謠對于最終徹底消滅謠言起決定性作用;消滅辟謠的滯后性對于減緩網絡謠言傳播同樣有極大幫助。為此,還提出了一種未來可能的消滅辟謠滯后性的網絡謠言抑制策略。Abstract: With the increasing popularity of the Internet and the spread of COVID-19, epidemic-related rumors have attracted significant attention, allowing them to brew quickly and pose extremely negative social impacts. It is of great significance to investigate the propagation process of online rumors and offer tentative strategies to curb it. Based on the traditional susceptible, infected, recovered (SIR) model of online rumor propagation, groups of potential and die-hard rumor believers were introduced in this paper, establishing an authoritative rumor-refuting mechanism. Meanwhile, this paper considered factors such as the time-lag effect of rumor refutation from the nonauthoritative and authoritative institutions and the impact of the popularizing rate of higher education on the propagation and refutation of rumors. As a result of the process, the SEIRD (susceptible, exposed, infected, recovered, die-hard-infected) rumor propagation model was established to study how the proportion of the susceptible, exposed, infected, recovered, and die-hard-infected varies under different popularizing rates of higher education, the presence or absence of the authoritative rumor-refuting institutions, and the time-lag effect of rumor refutation. Finally, the model’s effectiveness was verified via experimental simulation, which provided a reference for controlling the spread of online rumor propagation. In addition, the paper proposed a rumor-refuting coefficient to measure the rumor-refuting ability of the nonauthoritative and authoritative institutions. The results show that (1) increasing popularizing rate of higher education significantly slows down the rumor propagation and reduces the rumor propagation peak; (2) refuting the rumors based on the authoritative institutions is decisive for the ultimate elimination of rumors; and (3) eliminating the time-lag effect in refuting rumors facilitates slowing down the propagation of the online rumors. Therefore, the paper puts forward a feasible strategy to eliminate the time-lag effect of online rumor refutation in the future.
-
圖 3 普及高等教育和權威機構對我國網絡環境下謠言傳播的影響。(a)SEIRD我國網絡謠言傳播模型;(b)引入權威機構辟謠的SEIRD我國網絡謠言傳播模型;(c)提高高等教育普及率的SEIRD我國網絡謠言傳播模型;(d)同時提高高等教育普及率并引入權威機構辟謠的SEIRD我國網絡謠言傳播模型
Figure 3. Influence of popularized higher education and authoritative institutions on rumor propagation in China’s online environment: (a) China’s SEIRD online rumor propagation model; (b) China’s SEIRD authoritative rumor-refuting model; (c) China’s SEIRD model for increasing the popularizing rate of higher education; (d) China’s SEIRD model for both authoritative rumor-refuting and increasing the popularizing rate of higher education
圖 6 權威機構辟謠對雙黃連事件謠言傳播的影響。(a)無權威機構辟謠下的雙黃連事件謠言傳播模型;(b)有權威機構辟謠下的雙黃連事件謠言傳播模型
Figure 6. Influence of authoritative rumor refutation on the rumor spread of the Shuanghuanglian incident: (a) SEIRD rumor propagation model of the Shuanghuanglian incident without authoritative rumor refutation; (b) SEIRD rumor propagation model of Shuanghuanglian incident with authoritative rumor refutation
www.77susu.com -
參考文獻
[1] Liu F, Li M T. Research on SIRI rumor spreading model with spontaneous behavior. J Syst Sci Math Sci, 2020, 40(7): 1257 doi: 10.12341/jssms13922劉芳, 李明濤. 一類具有自發行為的SIRI謠言傳播模型研究. 系統科學與數學, 2020, 40(7):1257 doi: 10.12341/jssms13922 [2] Ding X J, Li L X. The spreading dynamics of rumors in social media under the anti-silence spiral effect. Syst Eng Theory Pract, 2020, 40(12): 3149 doi: 10.12011/SETP2019-1700丁學君, 李臨霄. 反沉默螺旋效應下社交媒體謠言傳播動力學研究. 系統工程理論與實踐, 2020, 40(12):3149 doi: 10.12011/SETP2019-1700 [3] Fu W, Pan X Z, Liu Y Z. Rumor spreading model based on principle of social identity. Comput Eng, 2018, 44(9): 136付偉, 潘曉中, 劉亞州. 基于社會認同原理的謠言擴散模型. 計算機工程, 2018, 44(9):136 [4] Hosni A I E, Li K, Ahmad S. Minimizing rumor influence in multiplex online social networks based on human individual and social behaviors. Inf Sci, 2020, 512: 1458 doi: 10.1016/j.ins.2019.10.063 [5] Wang X L, Zhao L J, Xie W L. Rumor spreading model with variable forgetting rate in scale-free network. Syst Eng Theory Pract, 2015, 35(2): 458 doi: 10.12011/1000-6788(2015)2-458王筱莉, 趙來軍, 謝婉林. 無標度網絡中遺忘率變化的謠言傳播模型研究. 系統工程理論與實踐, 2015, 35(2):458 doi: 10.12011/1000-6788(2015)2-458 [6] Zhang J P, Guo H M, Jing W J, et al. Dynamic analysis of rumor propagation model based on true information spreader. Acta Phys Sin, 2019, 68(15): 150501 doi: 10.7498/aps.68.20190191張菊平, 郭昊明, 荊文君, 等. 基于真實信息傳播者的謠言傳播模型的動力學分析. 物理學報, 2019, 68(15):150501 doi: 10.7498/aps.68.20190191 [7] Fan C L, Song H M, Ding G H. Research on an improved SEIR network rumor propagation model. J Intell, 2017, 36(3): 86 doi: 10.3969/j.issn.1002-1965.2017.03.015范純龍, 宋會敏, 丁國輝. 一種改進的SEIR網絡謠言傳播模型研究. 情報雜志, 2017, 36(3):86 doi: 10.3969/j.issn.1002-1965.2017.03.015 [8] Liu J Y, Li D P. Research on edge immunization strategy of online social network based on triple group structure. Comput Eng, 2018, 44(6): 130 doi: 10.3969/j.issn.1000-3428.2018.06.023劉建友, 李代平. 基于三元組結構的在線社交網絡邊免疫策略研究. 計算機工程, 2018, 44(6):130 doi: 10.3969/j.issn.1000-3428.2018.06.023 [9] Luo J Y, Tang N J. Rumor propagation model based on edge-based compartmental theory. J Comput Appl, 2019, 39(11): 3409羅靖宇, 唐寧九. 基于邊劃分理論的謠言傳播模型. 計算機應用, 2019, 39(11):3409 [10] Qiu L Q, Liu S Q. C-SIW rumor propagation model with variable propagation rate and perception mechanism in social networks. Discrete Dyn Nat Soc, 2020: 5712968 [11] Wang J J, Jiang Z A, Deng Y F, et al. Modeling and influence factors of warning dissemination. J Univ Sci Technol Beijing, 2012, 34(12): 1453王晶晶, 蔣仲安, 鄧云峰, 等. 警報傳播過程建模及影響因素. 北京科技大學學報, 2012, 34(12):1453 [12] Zhang Y H, Zhu J J. Dynamic behavior of an I2S2R rumor propagation model on weighted contract networks. Phys A:Stat Mech Appl, 2019, 536: 120981 doi: 10.1016/j.physa.2019.04.217 [13] Chen S S, Jiang H J, Li L, et al. Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks. Chaos Solitons Fractals, 2020, 140: 110206 doi: 10.1016/j.chaos.2020.110206 [14] Zhu L H, Liu M X, Li Y M. The dynamics analysis of a rumor propagation model in online social networks. Phys A:Stat Mech Appl, 2019, 520: 118 doi: 10.1016/j.physa.2019.01.013 [15] Dong S, Huang Y C. A class of rumor spreading models with population dynamics. Commun Theor Phys, 2018, 70(6): 795 doi: 10.1088/0253-6102/70/6/795 [16] Tan Z H, Shi Y C, Shi N X, et al. Rumor propagation analysis model inspired by gravity theory for online social networks. J Comput Res Dev, 2017, 54(11): 2586 doi: 10.7544/issn1000-1239.2017.20160434譚振華, 時迎成, 石楠翔, 等. 基于引力學的在線社交網絡空間謠言傳播分析模型. 計算機研究與發展, 2017, 54(11):2586 doi: 10.7544/issn1000-1239.2017.20160434 [17] Wei Y, Yin Y J. Rumor propagation model for crowd-gathered place of emergency event. Comput Eng, 2019, 45(9): 302蔚瑩, 殷雁君. 突發事件人群聚集場所的謠言傳播模型. 計算機工程, 2019, 45(9):302 [18] Zhao M, Chen W X, Song Q K. Research on a rumor spreading model with media coverage. Appl Math Mech, 2018, 39(12): 1400趙敏, 陳文霞, 宋乾坤. 考慮媒體報道效應的謠言傳播模型研究. 應用數學和力學, 2018, 39(12):1400 [19] Zhu L H, Li L. Dynamic analysis of rumor-spread-delaying model based on rumor-refuting mechanism. Acta Phys Sin, 2020, 69(2): 020501 doi: 10.7498/aps.69.20191503朱霖河, 李玲. 基于辟謠機制的時滯謠言傳播模型的動力學分析. 物理學報, 2020, 69(2):020501 doi: 10.7498/aps.69.20191503 [20] Zhu L H, Liu W S, Zhang Z D. Delay differential equations modeling of rumor propagation in both homogeneous and heterogeneous networks with a forced silence function. Appl Math Comput, 2020, 370: 124925 [21] Li C R. A study on time-delay rumor propagation model with saturated control function. Adv Differ Equ, 2017, 2017(1): 1 doi: 10.1186/s13662-016-1057-2 [22] Zhu L H, Zhao H Y, Wang H Y. Stability and spatial patterns of an epidemic-like rumor propagation model with diffusions. Phys Scr, 2019, 94(8): 085007 doi: 10.1088/1402-4896/ab1568 [23] Zhu L H, Zhao H Y, Wang H Y. Partial differential equation modeling of rumor propagation in complex networks with higher order of organization. Chaos:Interdiscip J Nonlinear Sci, 2019, 29(5): 053106 doi: 10.1063/1.5090268 [24] Zhang J X, Wang L T, Zhang J H. Internet rumors spreading and control model with multiple propagation sources. Inf Sci, 2020, 38(11): 115張金鑫, 王麗婷, 張金華. 具有多個傳播源的網絡謠言傳播與導控模型研究. 情報科學, 2020, 38(11):115 [25] Chen A, Wang Z J, Chen Y H. Spread and governance of pseudo-science Internet rumors in major public healthy emergencies based on SEIR model: A case study of COVID-19 epidemic. Sci Technol Rev, 2020, 38(4): 55 doi: 10.3981/j.issn.1000-7857.2020.04.007陳安, 王子君, 陳櫻花. 基于SEIR模型視角的重大公共衛生事件中偽科學網絡謠言的傳播治理: 以新冠肺炎疫情為例. 科技導報, 2020, 38(4):55 doi: 10.3981/j.issn.1000-7857.2020.04.007 [26] Huo L G, Chen S J. Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network. Phys A:Stat Mech Appl, 2020, 559: 125063 doi: 10.1016/j.physa.2020.125063 [27] Shi X X, Ye H P. Establishment and dynamic analysis of a stochastic SIRS rumor propagation model. J Donghua Univ (Nat Sci) , 2020, 46(5): 828石星星, 葉海平. 隨機謠言傳播模型的建立與動態分析. 東華大學學報(自然科學版), 2020, 46(5):828 [28] Wang Q Y, Liu R R, Jia C X. Influence of opinion dynamics on rumor propagation in complex networks. Acta Phys Sin, 2021, 70(6): 351王祁月, 劉潤然, 賈春曉. 復雜網絡上的意見動力學對謠言傳播的影響. 物理學報, 2021, 70(6):351 [29] Wan Y P, Zhang D G, Ren Q H. Propagation and inhibition of online rumor with considering rumor elimination process. Acta Phys Sin, 2015, 64(24): 240501 doi: 10.7498/aps.64.240501萬貽平, 張東戈, 任清輝. 考慮謠言清除過程的網絡謠言傳播與抑制. 物理學報, 2015, 64(24):240501 doi: 10.7498/aps.64.240501 [30] Cao W B, Wu Z F, Yang T, et al. Entity and attribute extraction of terrorism event based on text corpus. Chin J Eng, 2020, 42(04): 500曹文斌, 武卓峰, 楊濤, 等. 基于文本語料的涉恐事件實體屬性抽取. 工程科學學報, 2020, 42(04):500 [31] Zheng H Y, Liao C L, Li T Z. A topic detection method for network long text. Chin J Eng, 2019, 41(9): 1208鄭恒毅, 廖城霖, 李天柱. 一種面向網絡長文本的話題檢測方法. 工程科學學報, 2019, 41(9):1208 [32] Office of the Central Cyberspace Affairs Commission, Cyberspace Administration of China. The 46th China Statistical Report on Internet Development[R/OL]. China Internet Network Information Center (2020-09-29) [2021-03-16]. http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/202009/P020210205509651950014.pdf中共中央網絡安全和信息化委員會辦公室, 中華人民共和國國家互聯網信息辦公室. 第46次中國互聯網絡發展狀況統計報告[R/OL]. 中國互聯網絡信息中心 (2020-09-29) [2021-03-16]. http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/202009/P020210205509651950014.pdf -