<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

連續驅動摩擦焊接技術的研究與工程應用

張晗 朱志明

張晗, 朱志明. 連續驅動摩擦焊接技術的研究與工程應用[J]. 工程科學學報, 2022, 44(6): 1002-1013. doi: 10.13374/j.issn2095-9389.2021.03.13.001
引用本文: 張晗, 朱志明. 連續驅動摩擦焊接技術的研究與工程應用[J]. 工程科學學報, 2022, 44(6): 1002-1013. doi: 10.13374/j.issn2095-9389.2021.03.13.001
ZHANG Han, ZHU Zhi-ming. Research and engineering application of continuous-drive friction welding[J]. Chinese Journal of Engineering, 2022, 44(6): 1002-1013. doi: 10.13374/j.issn2095-9389.2021.03.13.001
Citation: ZHANG Han, ZHU Zhi-ming. Research and engineering application of continuous-drive friction welding[J]. Chinese Journal of Engineering, 2022, 44(6): 1002-1013. doi: 10.13374/j.issn2095-9389.2021.03.13.001

連續驅動摩擦焊接技術的研究與工程應用

doi: 10.13374/j.issn2095-9389.2021.03.13.001
基金項目: 國家自然科學基金資助項目(51775301,51075231)
詳細信息
    通訊作者:

    E-mail: zzmdme@tsinghua.edu.cn

  • 中圖分類號: TG453

Research and engineering application of continuous-drive friction welding

More Information
  • 摘要: 在對摩擦焊接進行分類并簡要說明的基礎上,對連續驅動摩擦焊接技術的研究發展和應用現狀進行了全面梳理和深入剖析,涉及焊接工藝過程特征和主要工藝參數、工藝探索及工藝參數對接頭性能的影響、數值分析和模擬及工藝參數優化、異種金屬和非金屬材料摩擦焊接與工藝創新、實際工程應用和焊接設備等方面。從摩擦焊接技術的潛在應用、核心科學問題、新型摩擦焊接設備的研發、數值分析和模擬、與新興技術的結合等方面,對連續驅動摩擦焊接技術進行了評述和探討。

     

  • 圖  1  摩擦焊接技術分類

    Figure  1.  Classification of the friction welding technology

    圖  2  連續驅動摩擦焊。(a)原理示意圖;(b)工藝參數變化規律

    Figure  2.  Continuous-drive friction welding: (a) schematic diagram; (b) change of the process parameters

    圖  3  不同轉速下的AA6061-T6鋁合金CDFW接頭界面形態演變[12]

    Figure  3.  Evolution of the AA6061-T6 alloy CDFW joint interface morphologies under different rotation speeds[12]

    圖  4  不同轉速下的GH4169 CDFW接頭飛邊形貌演變[11]

    Figure  4.  Evolution of the flash appearance of the GH4169 CDFW joint with different rotation speeds[11]

    圖  5  5A33鋁合金和AZ31B鎂合金CDFW接頭在不同摩擦時間下的宏觀形貌[13]

    Figure  5.  Optical macrographs of the 5A33 Al alloy to the AZ31B Mg alloy CDFW joints at different friction time[13]

    圖  6  不同摩擦時間的AISI 304L和WC?Co金屬陶瓷的CDFW接頭形態[24]。(a)4 s;(b)6 s;(c)8 s;(d)10 s;(e)12 s

    Figure  6.  Photos of the AISI 304L to WC?Co cermet CDFW joints obtained using different friction times[24]: (a) 4 s; (b) 6 s; (c) 8 s; (d) 10 s; (e) 12 s

    圖  7  AA5052與LCS的CDFW接頭形貌(a)及對應的摩擦扭矩曲線(b)[26]

    Figure  7.  Joint morphology (a) and friction torque curve (b) during the CDFW of AA5052 to LCS[26]

    圖  8  工藝參數對接頭形態的影響[28]。(a)FT=4 s, UP=120 MPa;(b)FT=4 s, UP=220 MPa;(c)FT=6 s, UP=220 MPa

    Figure  8.  Influence of the process parameters on the joint morphology[28]: (a) FT=4 s, UP=120 MPa; (b) FT=4 s, UP=220 MPa; (c) FT=6 s, UP=220 MPa

    圖  9  GH4169 CDFW有限元分析[30]。(a)工件的二維軸對稱和網格模型;(b)溫度場;(c)接頭形貌

    Figure  9.  Finite element (FE) models of the GH4169 CDFW[30]: (a) 2D axisymmetric model and meshing of the workpiece; (b) temperature contour; (c) joint morphology

    圖  10  AISI 1020和ASTM A536的CDFW及焊接工藝基本流程[32]

    Figure  10.  Experimental setup for AISI 1020 to ASTM A536 CDFW with the basic steps in the welding process[32]

    圖  11  聚氯乙烯與聚甲基丙烯酸甲酯CDFW焊縫拉伸試驗斷面微觀組織形態對比(Fud—中心區,Fpd—周邊區,Fpl—中間部分)。(a)未使用溶劑;(b)添加蒸餾水

    Figure  11.  Comparison of the microstructure morphologies of the CDFW joints after the tensile test (Fud—central zone, Fpd—middle section, Fpl—peripheral zone): (a) without solvent treatment; (b) treated with distilled water

    圖  12  中間層添加及CDFW示意圖[35]。(a)為不銹鋼工件電沉積添加鎳中間層;(b)帶有鎳中間層的CDFW

    Figure  12.  Schematic of the interlayer insertion and the CDFW[35]: (a) insertion of the Ni interlayer on the stainless-steel substrate through the electrodeposition process; (b) CDFW with the Ni interlayer

    圖  13  不同溫度條件下的高頻感應預加熱CDFW連接Al和Cu接頭斷面結構[36]

    Figure  13.  Cross-section of the Al to Cu CDFW joints with different pre-heating temperatures by the high-frequency induction pre-heating method[36]

    圖  14  45#鋼CDFW接頭形貌[37]

    Figure  14.  Macrographs of the 45# steel CDFW joint[37]

    圖  15  薄壁管件CDFW[38]。(a)焊機結構;(b)接頭形貌

    Figure  15.  Thin-walled pipe CDFW[38]: (a) welder structure; (b) joint morphology

    圖  16  皮質骨螺釘CDFW[39]。(a)接頭形貌;(b)皮質骨螺釘設計結構

    Figure  16.  Cortical bone screw CDFW[39]: (a) joint morphology; (b) schematic design of cortial bone screws

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Qi S A, Liu C D. Friction welding and its technical development. Machinery, 2003, 41(11): 24 doi: 10.3969/j.issn.1000-4998.2003.11.008

    齊少安, 劉承東. 摩擦焊接及其工藝發展. 機械制造, 2003, 41(11):24 doi: 10.3969/j.issn.1000-4998.2003.11.008
    [2] Li W Y, Vairis A, Preuss M, et al. Linear and rotary friction welding review. Int Mater Rev, 2016, 61(2): 71 doi: 10.1080/09506608.2015.1109214
    [3] Akinlabi E T, Mahamood R M. Solid-state Welding: Friction and Friction Stir Welding Processes. Switzerland: Springer International Publishing, 2020
    [4] Liang H, Zhang Z. Application of inertial friction welding on aeroengine. J Mater Eng, 1992, 20(2): 48

    梁海, 張崢. 慣性摩擦焊在航空發動機上的應用. 材料工程, 1992, 20(2):48
    [5] Nicholas E D. Friction processing technologies. Weld World, 2003, 47(11-12): 2 doi: 10.1007/BF03266402
    [6] Chen Z H. Analysis of friction processing technology and its engineering applications. Electr Weld Mach, 2011, 41(8): 101 doi: 10.3969/j.issn.1001-2303.2011.08.020

    陳忠海. 摩擦焊接技術及其工程應用. 電焊機, 2011, 41(8):101 doi: 10.3969/j.issn.1001-2303.2011.08.020
    [7] Wang Y, Xiong B Q, Li Z H, et al. Microstructure and properties of friction stir welded joints for Al?Zn?Mg?Cu?Zr?(Sc) alloys. Chin J Eng, 2020, 42(5): 612

    王宇, 熊柏青, 李志輝, 等. Al?Zn?Mg?Cu?Zr?(Sc)合金攪拌摩擦焊接頭組織和性能. 工程科學學報, 2020, 42(5):612
    [8] Zhao X Z, Du S G, Hou D X. Status and perspectives of continues drive friction welding machine. New Technol New Process, 2014(2): 1 doi: 10.3969/j.issn.1003-5311.2014.02.001

    趙鑫哲, 杜隨更, 侯東祥. 連續驅動摩擦焊機的研究現狀和展望. 新技術新工藝, 2014(2):1 doi: 10.3969/j.issn.1003-5311.2014.02.001
    [9] Gao J Z, Xu B, Xu X F, et al. Applications of friction welding in jointing of petroleum tubular goods. Petroleum Tubul Goods Instrum, 2019, 5(6): 1

    高建忠, 徐斌, 許曉鋒, 等. 摩擦焊技術在石油管材連接中的應用展望. 石油管材與儀器, 2019, 5(6):1
    [10] Wang Z P, Zhong Y, Zhang L J, et al. Friction weldability of TiAl to NiCr20TiAl. Electr Weld Mach, 2004, 34(9): 35 doi: 10.3969/j.issn.1001-2303.2004.09.012

    王忠平, 鐘燕, 張立軍, 等. TiAl金屬間化合物與NiCr20TiAl摩擦焊接性分析. 電焊機, 2004, 34(9):35 doi: 10.3969/j.issn.1001-2303.2004.09.012
    [11] Jin F, Xiong J T, Shi J M, et al. Flash formation mechanism during rotary friction welding of GH4169 superalloy. Mater Rep, 2020, 34(10): 10144 doi: 10.11896/cldb.20030095

    金峰, 熊江濤, 石俊秒, 等. GH4169旋轉摩擦焊飛邊成形機理研究. 材料導報, 2020, 34(10):10144 doi: 10.11896/cldb.20030095
    [12] Li X, Li J L, Jin F, et al. Effect of rotation speed on friction behavior of rotary friction welding of AA6061-T6 aluminum alloy. Weld World, 2018, 62(5): 923 doi: 10.1007/s40194-018-0601-y
    [13] Liang Z D, Qin G L, Geng P H, et al. Continuous drive friction welding of 5A33 Al alloy to AZ31B Mg alloy. J Manuf Process, 2017, 25: 153 doi: 10.1016/j.jmapro.2016.11.004
    [14] Liang Z D, Qin G L, Wang L Y, et al. Microstructural characterization and mechanical properties of dissimilar friction welding of 1060 aluminum to AZ31B magnesium alloy. Mater Sci Eng A, 2015, 645: 170 doi: 10.1016/j.msea.2015.07.089
    [15] Liu Y. Design of Hydraulic Servo Control System for Phase Friction Welding [Dissertation]. Harbin: Harbin Engineering University, 2013

    劉穎. 相位摩擦焊的液壓伺服系統設計[學位論文]. 哈爾濱: 哈爾濱工程大學, 2013
    [16] Tu H Y. Research and Development of Control System of Continuous Driven Friction Welding Machine [Dissertation]. Xi'an: Northwestern Polytechnical University, 2007

    涂昊昀. 連續驅動摩擦焊機控制系統的研究與開發[學位論文]. 西安: 西北工業大學, 2007
    [17] Du S G. New development in friction welding technology: Part I. Weld Technol, 2000, 29(3): 49 doi: 10.3969/j.issn.1002-025X.2000.03.028

    杜隨更. 摩擦焊接工藝新發展(一). 焊接技術, 2000, 29(3):49 doi: 10.3969/j.issn.1002-025X.2000.03.028
    [18] Du S G. New development in friction welding technology: Part II. Weld Technol, 2000, 29(6): 48 doi: 10.3969/j.issn.1002-025X.2000.06.025

    杜隨更. 摩擦焊接工藝新發展(二). 焊接技術, 2000, 29(6):48 doi: 10.3969/j.issn.1002-025X.2000.06.025
    [19] Bhamji I, Preuss M, Threadgill P L, et al. Linear friction welding of AISI 316L stainless steel. Mater Sci Eng A, 2010, 528(2): 680 doi: 10.1016/j.msea.2010.09.043
    [20] Wanjara P, Jahazi M. Linear friction welding of Ti-6Al-4V: Processing, microstructure, and mechanical-property inter-relationships. Metall Mater Trans A, 2005, 36(8): 2149 doi: 10.1007/s11661-005-0335-5
    [21] Weiss R, Sassani F. Strength of friction welded ceramic-metal joints. Mater Sci Technol, 1998, 14(6): 554 doi: 10.1179/mst.1998.14.6.554
    [22] Fu L, Du S G, Jie W Q. Effect of external electric field on microstructure and diffusion behavior of friction welding joint of dissimlar materials during post weld annealing treatment. Trans Met Heat Treat, 2003, 24(1): 73 doi: 10.3969/j.issn.1009-6264.2003.01.017

    傅莉, 杜隨更, 介萬奇. 異種金屬摩擦焊后電場熱處理組織與擴散行為. 金屬熱處理學報, 2003, 24(1):73 doi: 10.3969/j.issn.1009-6264.2003.01.017
    [23] Li W Y, Wang F F. Modeling of continuous drive friction welding of mild steel. Mater Sci Eng A, 2011, 528(18): 5921 doi: 10.1016/j.msea.2011.04.001
    [24] Cheniti B, Miroud D, Badji R, et al. Microstructure and mechanical behavior of dissimilar AISI 304L/WC-Co cermet rotary friction welds. Mater Sci Eng A, 2019, 758: 36 doi: 10.1016/j.msea.2019.04.081
    [25] Khidhir G I, Baban S A. Efficiency of dissimilar friction welded 1045 medium carbon steel and 316L austenitic stainless steel joints. J Mater Res Technol, 2019, 8(2): 1926 doi: 10.1016/j.jmrt.2019.01.010
    [26] Kimura M, Ishii H, Kusaka M, et al. Joining phenomena and joint strength of friction welded joint between pure aluminium and low carbon steel. Sci Technol Weld Join, 2009, 14(5): 388 doi: 10.1179/136217109X425856
    [27] Sakiyan S, Sabet H, Abbasi M. Characterization of mechanical properties in X45CrSi9-3/Nimonic 80A welded by friction welding. Int J Steel Struct, 2017, 17(1): 319 doi: 10.1007/s13296-016-0003-1
    [28] Liu Y, Zhao H Y, Peng Y, et al. Microstructure characterization and mechanical properties of the continuous-drive axial friction welded aluminum/stainless steel joint. Int J Adv Manuf Technol, 2019, 104(9-12): 4399 doi: 10.1007/s00170-019-04245-5
    [29] Reddy A C. Evaluation of parametric significance in friction welding process of AA1100 and Zr705 alloy using finite element analysis. Mater Today Proc, 2017, 4(2): 2624 doi: 10.1016/j.matpr.2017.02.136
    [30] Nan X J, Xiong J T, Jin F, et al. Modeling of rotary friction welding process based on maximum entropy production principle. J Manuf Process, 2019, 37: 21 doi: 10.1016/j.jmapro.2018.11.016
    [31] Sahin M. Optimizing the parameters for friction welding stainless steel to copper parts. Mater Tehnol, 2016, 50(1): 109 doi: 10.17222/mit.2015.023
    [32] Winiczenko R. Effect of friction welding parameters on the tensile strength and microstructural properties of dissimilar AISI 1020-ASTM A536 joints. Int J Adv Manuf Technol, 2016, 84(5-8): 941
    [33] Sreenivasan K S, Kumar S S, Katiravan J. Genetic algorithm based optimization of friction welding process parameters on AA7075-SiC composite. Eng Sci Technol Int J, 2019, 22(4): 1136
    [34] Lin C B, Wu L C, Chou Y C. Effect of solvent and cosolvent on friction welding properties between part of PMMA with PVC. J Mater Sci, 2003, 38(12): 2563 doi: 10.1023/A:1024414030765
    [35] Cheepu M, Ashfaq M, Muthupandi V. A new approach for using interlayer and analysis of the friction welding of titanium to stainless steel. Trans Indian Inst Met, 2017, 70(10): 2591 doi: 10.1007/s12666-017-1114-x
    [36] Wang G L, Li J L, Wang W L, et al. Rotary friction welding on dissimilar metals of aluminum and brass by using pre-heating method. Int J Adv Manuf Technol, 2018, 99(5-8): 1293 doi: 10.1007/s00170-018-2572-y
    [37] Chi L X, Wu W. Effect of post-heat treatment on microstructure and mechanical properties of friction welding joint of 45 steel. Trans Mater Heat Treat, 2015, 36(1): 99

    遲露鑫, 吳瑋. 熱處理對45鋼摩擦焊接頭組織性能的影響. 材料熱處理學報, 2015, 36(1):99
    [38] Kimura M, Kusaka M, Kaizu K, et al. Friction welding technique and joint properties of thin-walled pipe friction-welded joint between type 6063 aluminum alloy and AISI 304 austenitic stainless steel. Int J Adv Manuf Technol, 2016, 82(1-4): 489 doi: 10.1007/s00170-015-7384-8
    [39] Nasution A K, Ulum M F, Kadir M R A, et al. Mechanical and corrosion properties of partially degradable bone screws made of pure iron and stainless steel 316L by friction welding. Sci China Mater, 2018, 61(4): 593 doi: 10.1007/s40843-017-9057-3
    [40] Lu D. The Structure Design and the Simulation of all Motor Drive Friction Welding Machine [Dissertation]. Harbin: Northeast Forestry University, 2016

    路達. 全電機驅動摩擦焊機的結構設計及仿真[學位論文]. 哈爾濱: 東北林業大學, 2016
    [41] Liu H. Research on the Closed-Loop Electro Hydraulic Proportional Control System of Friction Welding Machine [Dissertation]. Harbin: Northeast Forestry University, 2009

    劉幻. 摩擦焊機電液比例閉環控制系統的研究[學位論文]. 哈爾濱: 東北林業大學, 2009
    [42] Li P. Heat Source Evolution and Joint Formation in Rotary Friction Welding Process [Dissertation]. Xi'an: Northwestern Polytechnical University, 2015

    李鵬. 旋轉摩擦焊熱源演變及接頭成形機制[學位論文]. 西安: 西北工業大學, 2015
  • 加載中
圖(16)
計量
  • 文章訪問數:  4005
  • HTML全文瀏覽量:  425
  • PDF下載量:  63
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-03-13
  • 網絡出版日期:  2021-07-06
  • 刊出日期:  2022-06-25

目錄

    /

    返回文章
    返回