<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

金屬礦山固廢充填研究現狀與發展趨勢

程海勇 吳愛祥 吳順川 朱加琦 李紅 劉津 牛永輝

程海勇, 吳愛祥, 吳順川, 朱加琦, 李紅, 劉津, 牛永輝. 金屬礦山固廢充填研究現狀與發展趨勢[J]. 工程科學學報, 2022, 44(1): 11-25. doi: 10.13374/j.issn2095-9389.2021.03.08.001
引用本文: 程海勇, 吳愛祥, 吳順川, 朱加琦, 李紅, 劉津, 牛永輝. 金屬礦山固廢充填研究現狀與發展趨勢[J]. 工程科學學報, 2022, 44(1): 11-25. doi: 10.13374/j.issn2095-9389.2021.03.08.001
CHENG Hai-yong, WU Ai-xiang, WU Shun-chuan, ZHU Jia-qi, LI Hong, LIU Jin, NIU Yong-hui. Research status and development trend of solid waste backfill in metal mines[J]. Chinese Journal of Engineering, 2022, 44(1): 11-25. doi: 10.13374/j.issn2095-9389.2021.03.08.001
Citation: CHENG Hai-yong, WU Ai-xiang, WU Shun-chuan, ZHU Jia-qi, LI Hong, LIU Jin, NIU Yong-hui. Research status and development trend of solid waste backfill in metal mines[J]. Chinese Journal of Engineering, 2022, 44(1): 11-25. doi: 10.13374/j.issn2095-9389.2021.03.08.001

金屬礦山固廢充填研究現狀與發展趨勢

doi: 10.13374/j.issn2095-9389.2021.03.08.001
基金項目: 國家自然科學基金資助項目(52074137);中國博士后科學基金資助項目(2020T130272);云南省青年基金資助項目(202001AU070036);云南省創新團隊資助項目(202105AE160023)
詳細信息
    通訊作者:

    E-mail: wushunchuan@ustb.edu.cn

  • 中圖分類號: TD853

Research status and development trend of solid waste backfill in metal mines

More Information
  • 摘要: 介紹了以膏體+多介質協同充填、同步充填和功能性充填為代表的新興充填理念。系統闡述了以流變力學和固體力學為主體的礦山充填力學架構,剖析了原位多場多因素擾動作用,并介紹了最新研發的充填體多場耦合監測系統。總結了全尾砂深度濃密、固液混合攪拌以及長距離漿體輸送等充填核心環節的發展特點及研究進展。分析了充填智能化發展的必要性,梳理了充填領域涉及的智能化算法,提出了充填智能化未來發展思路。通過對礦山固廢充填發展趨勢分析,認為未來礦山固廢充填需要深度拓展綠色發展內涵,進一步探索模塊化、規模化和智能化之路,積極融入并服務深地開采需求,充填采礦法或將成為深部采礦和綠色采礦未來可期的唯一解決方案。

     

  • 圖  1  充填采礦技術演化歷程

    Figure  1.  Evolution of backfill mining technology

    圖  2  膏體技術在中國應用礦山數量統計(1996—2017年)

    Figure  2.  Number of mines applying paste technology in China (1996—2017)

    圖  3  現代充填設計理念與技術路線

    Figure  3.  Modern backfilling design concept

    圖  4  充填采場強度分布不規則性。(a)某進路式;(b)某分段式;(c)某空場嗣后

    Figure  4.  Irregularity of strength distribution in backfilling stope: (a) a stope with drift filling; (b) a sublevel filling stope; (c) an open stope with subsequent filling

    圖  5  基于膏體+多介質協同充填的高地應力環境低成本采礦方法

    Figure  5.  Low-cost mining method in high geostress environment based on paste + multimedium collaborative filling

    圖  6  大量放礦同步充填無頂柱留礦采礦法示意

    Figure  6.  Schematic of the mining method of large amount drawing with synchronous filling without top column

    1—Return air roadway;2—Top pillar;3—Patio;4—Liaison road;5—Intercolumn;6—Retained ore;7—Bottom pillar;8—Funnel;9—Stage transport drift;10—Unmapped stone;11—Filling material;12—Isolation layer

    圖  7  功能性充填基本類別

    Figure  7.  Basic categories of functional filling

    圖  8  礦山充填力學研究框架

    Figure  8.  Research framework of mine filling mechanics

    圖  9  膏體流變力學架構

    Figure  9.  Rheological mechanical structure of paste

    圖  10  充填料漿的黏彈性(a)與觸變性(b)

    Figure  10.  Viscoelasticity (a) and thixotropy (b) of filling slurry

    圖  11  環管實驗裝置圖

    Figure  11.  Schematic of the loop facility

    圖  12  含硫尾砂充填料漿水化過程

    Figure  12.  Schematic diagram for hydration process of sulphidic cemented backfills

    圖  13  充填體多場耦合監測系統

    Figure  13.  Multi-field coupling monitoring system for backfill

    圖  14  粒子間的總勢能相互作用

    Figure  14.  Total potential energy interaction VT between particles

    圖  15  礦山智能化國際進程

    Figure  15.  International process of mining intelligence

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yin S H, Shao Y J, Wu A X, et al. A systematic review of paste technology in metal mines for cleaner production in China. J Clean Prod, 2020, 247: 119590 doi: 10.1016/j.jclepro.2019.119590
    [2] Ministry of Natural Resources. China Mineral Resources. Beijng: Geological Publishing House, 2020

    中華人民共和國自然資源部. 中國礦產資源報告. 北京: 地質出版社, 2020
    [3] Wu A X, Ruan Z E, Bürger R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology. Miner Eng, 2020, 156: 106488 doi: 10.1016/j.mineng.2020.106488
    [4] Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Met Mine, 2021(1): 1

    吳愛祥, 王勇, 張敏哲, 等. 金屬礦山地下開采關鍵技術新進展與展望. 金屬礦山, 2021(1):1
    [5] Liu T Y, Cai S J. Status quo of application and research of paste fill technology in China and abroad. China Min Mag, 1998, 7(5): 1

    劉同有, 蔡嗣經. 國內外膏體充填技術的應用與研究現狀. 中國礦業, 1998, 7(5):1
    [6] Chen Q F, Chen Q L. Synchronous filling mining technology idea and a kind of representative mining method. China Min Mag, 2015, 24(12): 86 doi: 10.3969/j.issn.1004-4051.2015.12.018

    陳慶發, 陳青林. 同步充填采礦技術理念及一種代表性采礦方法. 中國礦業, 2015, 24(12):86 doi: 10.3969/j.issn.1004-4051.2015.12.018
    [7] Wei C S, Chen Q F. Study progress and prospect of the development direction of “synchronous filling”. Met Mine, 2020(5): 9

    韋才壽, 陳慶發. “同步充填”研究進展與發展方向展望. 金屬礦山, 2020(5):9
    [8] Liu L, Xin J, Zhang B, et al. Basic theories and applied exploration of functional backfill in mines. J China Coal Soc, 2018, 43(7): 1811

    劉浪, 辛杰, 張波, 等. 礦山功能性充填基礎理論與應用探索. 煤炭學報, 2018, 43(7):1811
    [9] Liu L, Fang Z Y, Zhang B, et al. Development history and basic categories of mine backfill technology. Met Mine, 2021(3): 1

    劉浪, 方治余, 張波, 等. 礦山充填技術的演進歷程與基本類別. 金屬礦山, 2021(3):1
    [10] Belem T, Benzaazoua M. Design and application of underground mine paste backfill technology. Geotech Geol Eng, 2008, 26(2): 147 doi: 10.1007/s10706-007-9154-3
    [11] Cai S J. Fundamentals of mine filling Mechanics. 2nd ed. Beijing: Metallurgical Industry Press, 2009

    蔡嗣經. 礦山充填力學基礎. 2版. 北京: 冶金工業出版社, 2009
    [12] Wu A X, Li H, Cheng H Y, et al. Status and prospects of researches on rheology of paste backfill using unclassifiedtailings (Part 1): Concepts, characteristics and models. Chin J Eng, 2020, 42(7): 803

    吳愛祥, 李紅, 程海勇, 等. 全尾砂膏體流變學研究現狀與展望(上): 概念、特性與模型. 工程科學學報, 2020, 42(7):803
    [13] Cheng H Y, Wu S C, Zhang X Q, et al. Effect of particle gradation characteristics on yield stress of cemented paste backfill. Int J Miner Metall Mater, 2020, 27(1): 10 doi: 10.1007/s12613-019-1865-y
    [14] Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
    [15] Le Z H, Yu Q L, Zheng H T, et al. Interaction mechanism between granular backfill and rock pillar under lateral confined conditions. J Northeast Univ Nat Sci, 2021, 42(1): 124 doi: 10.12068/j.issn.1005-3026.2021.01.019

    勒治華, 于慶磊, 鄭浩田, 等. 側限條件下充填散體與巖柱相互作用機理. 東北大學學報(自然科學版), 2021, 42(1):124 doi: 10.12068/j.issn.1005-3026.2021.01.019
    [16] Wang J. Cement Strength Model and Its Application in Open Stope Continuous Mining with Subsequent Filling [Dissertation]. Kunming: Kunming University of Science and Technology, 2017

    王俊. 空場嗣后充填連續開采膠結體強度模型及其應用[學位論文]. 昆明: 昆明理工大學, 2017
    [17] Chen Y B. Strength Model and Application of Upward Layered Filling Body [Dissertation]. Kunming: Kunming University of Science and Technology, 2014

    陳玉賓. 上向分層充填體強度模型及應用[學位論文]. 昆明: 昆明理工大學, 2014
    [18] Wang J. Research and Application of Damage and Failure Evolution Mechanism and Strength Model of Layered Cemented Tailings Backfill [Dissertation]. Beijing: University of Science and Technology Beijing, 2021

    汪杰. 分層膠結充填體損破演化機理與強度模型研究及應用[學位論文]. 北京: 北京科技大學, 2021
    [19] Liu G S. Required Strength Model of Cemented Backfill with Research on Arching Mechanism Considering Backfill-Rock Interaction [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    劉光生. 充填體與圍巖接觸成拱作用機理及強度模型研究[學位論文]. 北京: 北京科技大學, 2017
    [20] Walker W J, Wa S C S, Montoy J, et al. Sulfate removal from coal mine water in western Pennsylvania: Regulatory requirements, design, and performance. J Am Soc Min Reclam, 2015, 4(1): 73
    [21] Chen S M. Research on the Mechanical Characteristics and Its Response Mechanism of Cemented Paste Backfill under the Effect of Stress and Temperature [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

    陳順滿. 壓力—溫度效應下膏體充填體力學特性及響應機制研究[學位論文]. 北京: 北京科技大學, 2020
    [22] Chen S M, Wu A X, Wang Y M, et al. Coupled effects of curing stress and curing temperature on mechanical and physical properties of cemented paste backfill. Constr Build Mater, 2021, 273: 121746 doi: 10.1016/j.conbuildmat.2020.121746
    [23] Cui L, Fall M. Multiphysics model for consolidation behavior of cemented paste backfill. Int J Geomech, 2017, 17(3): 04016077 doi: 10.1061/(ASCE)GM.1943-5622.0000743
    [24] Xue Z L, Yan Z P, Jiao H Z, et al. Dynamic settlement law of flocs during unclassified tailings in deep cone thickening process. Chin J Nonferrous Met, 2020, 30(9): 2206 doi: 10.11817/j.ysxb.1004.0609.2020-37563

    薛振林, 閆澤鵬, 焦華喆, 等. 全尾砂深錐濃密過程中絮團的動態沉降規律. 中國有色金屬學報, 2020, 30(9):2206 doi: 10.11817/j.ysxb.1004.0609.2020-37563
    [25] Jiao H Z, Wang S F, Wu A X, et al. Pore network model of tailings thickener bed and water drainage channel evolution under the shearing effect. Chin J Eng, 2019, 41(8): 987

    焦華喆, 王樹飛, 吳愛祥, 等. 剪切濃密床層孔隙網絡模型與導水通道演化. 工程科學學報, 2019, 41(8):987
    [26] Jiao H Z, Liu C S, Wu A X, et al. Influence of initial turbulence intensity and rake frame shear on flocculation behavior of unclassified-tailings. Adv Eng Sci, 2020, 52(2): 54

    焦華喆, 劉晨生, 吳愛祥, 等. 初始湍流強度與耙架剪切對全尾砂絮凝行為的影響. 工程科學與技術, 2020, 52(2):54
    [27] Li G C. Study on Size Change of Unclassified Tailings Flocs and Its Thickening Performance [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    李公成. 全尾砂絮團尺寸變化及其濃密性能研究[學位論文]. 北京: 北京科技大學, 2019
    [28] Zhou X. Study on Rules of Aggregate Structure Evolution and Mud Densification during Unclassified Tailings Thickening [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    周旭. 全尾砂濃密過程絮團結構演化及脫水規律研究[學位論文]. 北京: 北京科技大學, 2019
    [29] Ruan Z E. Study on Flocculation Behavior of Total Tailings in Feedwell and Its Optimization and Application [Dissertation]. Beijing: University of Science and Technology Beijing, 2021

    阮竹恩. 給料井內全尾砂絮凝行為及其優化應用研究[學位論文]. 北京: 北京科技大學, 2021
    [30] Ruan Z E, Wu A X, Wang Y M, et al. Effect of flocculation sedimentation on the yield stress of thickened ultrafine tailings slurry. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2020.08.01.002

    阮竹恩, 吳愛祥, 王貽明, 等. 絮凝沉降對濃縮超細尾砂料漿屈服應力的影響. 工程科學學報, https://doi.org/10.13374/j.issn2095-9389.2020.08.01.002
    [31] Yang L H, Wang H J, Wu A X, et al. Effect of mixing time on hydration kinetics and mechanical property of cemented paste backfill. Constr Build Mater, 2020, 247: 118516 doi: 10.1016/j.conbuildmat.2020.118516
    [32] Wang H J, Yang L H, Wang Y, et al. Multi-scale materials’ dispersive mixing technology of unclassified tailings paste. J Wuhan Univ Technol, 2017, 39(12): 76

    王洪江, 楊柳華, 王勇, 等. 全尾砂膏體多尺度物料攪拌均質化技術. 武漢理工大學學報, 2017, 39(12):76
    [33] Yang L H. Research on the Rheological Characteristics and the Mechanism of Shear Action during Paste Mixing [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

    楊柳華. 膏體攪拌過程流變特性及剪切作用機制研究[學位論文]. 北京: 北京科技大學, 2020
    [34] Gan D Q, Sun H K, Xue Z L, et al. Transport state evolution of the packed slurry with the influence of temperature. J China Univ Min Technol, 2021, 50(2): 248

    甘德清, 孫海寬, 薛振林, 等. 溫度影響下的充填料漿大流量管輸流態演化. 中國礦業大學學報, 2021, 50(2):248
    [35] Sun Z N. Choice of Mining Methods Based on Artificial Intelligence Theory [Dissertation]. Shenyang: Northeastern University, 2009

    孫征南. 基于人工智能理論的采礦方法選擇的研究[學位論文]. 沈陽: 東北大學, 2009
    [36] Zhou K P. Intelligent selection of mining methods in underground metal mines. Chin J Nonferrous Met, 1998, 8(Suppl 2): 673

    周科平. 地下金屬礦山采礦方法的智能選擇. 中國有色金屬學報, 1998, 8(增刊2): 673
    [37] Li L T, Gao Q, Yang Z Q, et al. Intelligent optimization for the activator proportion of filling cementitions material. J Harbin Inst Technol, 2019, 51(10): 137 doi: 10.11918/j.issn.0367-6234.201806028

    李立濤, 高謙, 楊志強, 等. 礦用充填膠凝材料激發劑配比智能優化決策. 哈爾濱工業大學學報, 2019, 51(10):137 doi: 10.11918/j.issn.0367-6234.201806028
    [38] Qi C C, Yang X Y, Li G C, et al. Research status and perspectives of the application of artificial intelligence in mine backfilling. J China Coal Soc, 2021, 46(2): 688

    齊沖沖, 楊星雨, 李桂臣, 等. 新一代人工智能在礦山充填中的應用綜述與展望. 煤炭學報, 2021, 46(2):688
    [39] Boubou R, Emeriault F, Kastner R. Artificial neural network application for the prediction of ground surface movements induced by shield tunnelling. Can Geotech J, 2010, 47(11): 1214 doi: 10.1139/T10-023
    [40] Orejarena L, Fall M. The use of artificial neural networks to predict the effect of sulphate attack on the strength of cemented paste backfill. Bull Eng Geol Environ, 2010, 69(4): 659 doi: 10.1007/s10064-010-0326-7
    [41] Qi C C, Fourie A, Chen Q S, et al. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill. J Clean Prod, 2018, 183: 566 doi: 10.1016/j.jclepro.2018.02.154
    [42] Zhang G S, Chen Y T, Hu Y J, et al. Research on mixing proportions of a new backfilling cementitious material based on artificial intelligence neural network. Min Res Dev, 2020, 40(9): 143

    張國勝, 陳彥亭, 胡亞軍, 等. 基于人工智能神經網絡新型充填膠凝材料配比研究. 礦業研究與開發, 2020, 40(9):143
    [43] Wang Z H, Wu A X, Wang Y M. Progress and prospect of three-dimensional analytical model for the strength design of cemented filling body. Min Res Dev, 2020, 40(1): 37

    王志會, 吳愛祥, 王貽明. 膠結充填體強度設計三維解析模型進展及展望. 礦業研究與開發, 2020, 40(1):37
    [44] Qi C C, Fourie A, Chen Q S. Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill. Constr Build Mater, 2018, 159: 473 doi: 10.1016/j.conbuildmat.2017.11.006
    [45] Qi C C, Fourie A, Ma G W, et al. Comparative study of hybrid artificial intelligence approaches for predicting hangingwall stability. J Comput Civ Eng, 2018, 32(2): 04017086 doi: 10.1061/(ASCE)CP.1943-5487.0000737
    [46] Qi C C, Chen Q S, Fourie A, et al. Constitutive modelling of cemented paste backfill: A data-mining approach. Constr Build Mater, 2019, 197: 262 doi: 10.1016/j.conbuildmat.2018.11.142
    [47] Wu A X, Li H, Yang L H, et al. Cemented paste backfill paves the way for deep mining. Gold, 2020, 41(9): 51

    吳愛祥, 李紅, 楊柳華, 等. 深地開采,膏體先行. 黃金, 2020, 41(9):51
  • 加載中
圖(15)
計量
  • 文章訪問數:  1082
  • HTML全文瀏覽量:  398
  • PDF下載量:  168
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-03-07
  • 網絡出版日期:  2021-07-01
  • 刊出日期:  2022-01-01

目錄

    /

    返回文章
    返回