Chloride retention mechanism of coral sand cement stones modified by graphene oxide
-
摘要: 珊瑚砂地基遠離大陸,在海洋環境下通過注漿或攪拌樁等工藝注入極少摻量氧化石墨烯(GO)的水泥漿液改善珊瑚砂地基,可以大幅提升珊瑚砂水泥結石體阻滯氯離子滲透性能。本文通過快速氯離子遷移試驗(RCM方法)、掃描電鏡(SEM)實驗和Image-Pro Plus圖像處理等,在對比分析河砂與珊瑚砂顆粒形態差異以及摻入GO前后微觀結構變化規律的基礎上,揭示了GO改性珊瑚砂水泥結石體阻滯氯離子滲透的作用機理。試驗結果表明:顆粒棱角度高、形狀不規則、多孔且含有內孔隙等原因是相同工藝條件下珊瑚砂水泥結石體阻滯氯離子滲透性遠低于河砂水泥結石體的主要原因;當摻入質量分數0.02%的GO后,28 d和56 d的珊瑚砂水泥結石體阻滯氯離子滲透性能指標提升程度最高(39.43%與48.93%),并與相同工藝條件下無添加GO的普通河砂水泥結石體指標相近;珊瑚砂水泥結石體阻滯氯離子滲透性能提升程度與GO摻量有關,兩者先呈正相關而后呈負相關,0.02%質量分數為本文最佳試驗摻入量;調控水泥水化產物生成規整有序的水化晶體形狀,改善界面過渡區的形貌,填充內部裂紋的空間,修復孔隙的形貌特征是摻入GO影響珊瑚砂水泥結石體抗氯離子滲透性的主要原因。Abstract: In the marine environment far away from the mainland, the coral sand foundation can be improved by injecting the cement grout with a very small amount of graphene oxide (GO) through grouting or mixing piles and other processes, which can greatly increase the stone body’s ability to block chloride ion penetration. Based on the comparative analysis of the difference in the particle morphology of river sand and coral sand and changes in hydration products and microstructure before and after GO incorporation, this study employed a rapid chloride ion migration test, scanning electron microscope experiment, and Image-Pro Plus image processing to reveal the mechanism of the modified coral sand cement stone body blocking permeation by chloride. The result reveals that high particle angles, irregular shapes, and porous and internal pores are the main reasons for the lower coral sand cement stone body than the river sand cement stone body in blocking chloride ion permeability under the same process conditions. After mixing 0.02% (mass fraction) GO, 28 d and 56 d coral sand cement stones have the highest degree of improvement in blocking chloride ion permeability (39.43% and 48.93%) and are similar to those of ordinary river sand cement stones without GO addition under the same process conditions. The coral sand cement stone body’s antichloride ion penetration performance improvement is related to the amount of GO. The two are first positively correlated and then negatively correlated. 0.02% is the best mix-up measure after the experiment in the assay. Regulating cement hydration products to form a regular and orderly hydrated crystal shape, improving the morphology of the interface transition zone, filling the space of internal cracks, and repairing the morphological characteristics of the pores are the main reasons that allow the incorporation of GO to affect the resistance of coral sand cement stones to chloride ion permeability.
-
Key words:
- coral sand /
- stone body /
- graphene oxide /
- chloride ion penetration /
- microstructure /
- mechanism of retention
-
圖 7 不同GO摻量28 d試塊的SEM圖.(a)0% GO,1000×,河砂試塊;(b)0.03% GO,1000×,河砂試塊;(c)0% GO,1000×,珊瑚砂試塊;(d)0.02% GO,1000×,珊瑚砂試塊;(e)0% GO,5000×,珊瑚砂試塊;(f)0.02% GO,5000×,珊瑚砂試塊
Figure 7. SEM image of the 28 d coral sand specimen with different GO mass fractions: (a) 0% GO, 1000×, river sand cement stones; (b) 0.03% GO, 1000×, river sand cement stones; (c) 0% GO, 1000×, coral sand cement stones; (d) 0.02% GO, 1000×, coral sand cement stones; (e) 0% GO, 5000×, coral sand cement stones; (f) 0.02% GO, 5000×, coral sand cement stones
圖 8 不同GO質量分數的珊瑚砂試塊和河砂試塊SEM圖 (a)0% GO珊瑚砂試塊;(b)0% GO河砂試塊;(c)0.02% GO珊瑚砂試塊;(d)0.03% GO河砂試塊
Figure 8. SEM images of the coral sand specimen and river sand specimen with different GO mass fractions: (a) 0% GO coral sand specimen; (b) 0% GO river sand specimen; (c) 0.02% GO coral sand specimen; (d) 0.03% GO river sand specimen
圖 9 不同GO質量分數的珊瑚砂試塊和河砂試塊SEM圖.(a)0% GO珊瑚砂試塊;(b)0% GO河砂試塊;(c)0.02% GO珊瑚砂試塊;(d)0.03% GO河砂試塊
Figure 9. SEM images of the coral sand specimen and river sand specimen with different GO mass fractions: (a) 0% GO coral sand specimen; (b) 0% GO river sand specimen; (c) 0.02% GO coral sand specimen; (d) 0.03% GO river sand specimen
表 1 水泥的物理及力學性能指標
Table 1. Physical and mechanical properties of cement
Setting times/min Stability flexural strengths/MPa Compressive strengths /
MPaInitial Final 3-day 28-day 3-day 28-day 180 240 6.6 8.9 32.7 56.8 表 2 28 d結石體內部平均孔隙直徑
Table 2. Pore diameter of the 28 d stone body
Specimen Diameter of pore /μm Specimen Diameter of pore /μm CS+28+0 14.41 RS+28+0 11.87 CS+28+1 13.02 RS+28+1 10.65 CS+28+2 12.32 RS+28+2 10.22 CS+28+3 13.33 RS+28+3 9.67 CS+28+4 13.83 RS+28+4 11.75 www.77susu.com -
參考文獻
[1] Wang R, Wu W J. Exploration and research on engineering geological properties of coral reefs—engaged in coral reef research for 30 years. J Eng Geol, 2019, 27(1): 202汪稔, 吳文娟. 珊瑚礁巖土工程地質的探索與研究——從事珊瑚礁研究30年. 工程地質學報, 2019, 27(1):202 [2] Ren H Q, Li X P, Long Z L. Theoretical and technical exploration of long-term safety and sustainable development of south island reef project // Proceedings of the 6th National Engineering Safety and Protection Conference. Xiangtan, 2018: 329任輝啟, 李新平, 龍志林. 南海島礁工程長期安全與可持續發展保障理論及技術探索//第六屆全國工程安全與防護學術會議論文集. 湘潭, 2018: 329 [3] Han X, Feng J J, Shao Y X, et al. Influence of a steel slag powder-ground fly ash composite supplementary cementitious material on the chloride and sulphate resistance of mass concrete. Powder Technol, 2020, 370: 176 doi: 10.1016/j.powtec.2020.05.015 [4] Feng L, Zhao P, Wang Z J, et al. Improvement of mechanical properties and chloride ion penetration resistance of cement pastes with the addition of pre-dispersed silica fume. Constr Build Mater, 2018, 182: 483 doi: 10.1016/j.conbuildmat.2018.06.053 [5] Wang D Z, Zhou X M, Fu B, et al. Chloride ion penetration resistance of concrete containing fly ash and silica fume against combined freezing-thawing and chloride attack. Constr Build Mater, 2018, 169: 740 doi: 10.1016/j.conbuildmat.2018.03.038 [6] He Y B, Chen B X, Liu S M, et al. Study on resistance of chloride ion penetration in fly ash/silicon ash polypropylene fiber concrete under preloading condition. J Hunan Univ Nat Sci, 2017, 44(3): 97何亞伯, 陳保勛, 劉素梅, 等. 預加荷載作用下粉煤灰/硅灰纖維混凝土氯離子滲透性能研究. 湖南大學學報(自然科學版), 2017, 44(3):97 [7] Zhu Y, Mei H, Chen J J. Experimental study on mineral admixtures and additives on chloride ion penetration resistance of concrete. Bull Chin Ceram Soc, 2016, 35(11): 3844朱燕, 梅華, 陳佳佳. 礦物摻合料與化學外加劑影響混凝土抗氯離子滲透性的試驗研究. 硅酸鹽通報, 2016, 35(11):3844 [8] Mohammed A, Sanjayan J G, Duan W H, et al. Incorporating graphene oxide in cement composites: A study of transport properties. Constr Build Mater, 2015, 84: 341 doi: 10.1016/j.conbuildmat.2015.01.083 [9] Lv S H, Zhang J, Zhu L L, et al. Preparation of cement composites with ordered microstructures via doping with graphene oxide nanosheets and an investigation of their strength and durability. Materials, 2016, 9(11): 924 doi: 10.3390/ma9110924 [10] Li X G, Ren Z F, Xu P H, et al. Research on mechanical properties and durability of graphene oxide composite PVA fiber reinforced cement-based material. Bull Chin Ceram Soc, 2018, 37(1): 245李相國, 任釗鋒, 徐朋輝, 等. 氧化石墨烯復合PVA纖維增強水泥基材料的力學性能及耐久性研究. 硅酸鹽通報, 2018, 37(1):245 [11] Du T. Effect of Graphene Oxide on Properties of Cement-Based Composite [Dissertation]. Harbin: Harbin Institute of Technology, 2014杜濤. 氧化石墨烯水泥基復合材料性能研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2014 [12] Wang J. Study of the Effect of Graphene Oxide on Cement Performance and Its Mechanism [Dissertation]. Beijing: Beijing University of Civil Engineering and Architecture, 2017王健. 氧化石墨烯對水泥的性能影響及作用機理研究[學位論文]. 北京: 北京建筑大學, 2017 [13] Shamsaei E, de Souza F B, Yao X P, et al. Graphene-based nanosheets for stronger and more durable concrete: A review. Constr Build Mater, 2018, 183: 642 doi: 10.1016/j.conbuildmat.2018.06.201 [14] Zhu Y W, Ji H X, Cheng H M, et al. Mass production and industrial applications of graphene materials. Natl Sci Rev, 2018, 5(1): 90 doi: 10.1093/nsr/nwx055 [15] Kauling A P, Seefeldt A T, Pisoni D P, et al. The worldwide graphene flake production. Adv Mater, 2018, 30(44): 1803784 doi: 10.1002/adma.201803784 [16] Zhu C Q, Chen H Y, Meng Q S, et al. Microscopic characterization of intra-pore structures of calcareous sands. Rock Soil Mech, 2014, 35(7): 1831朱長歧, 陳海洋, 孟慶山, 等. 鈣質砂顆粒內孔隙的結構特征分析. 巖土力學, 2014, 35(7):1831 [17] Chen B, Hu J M. Fractal behavior of coral sand during creep. Front Earth Sci, 2020, 8: 134 doi: 10.3389/feart.2020.00134 [18] Lv Y, Li F, Liu Y W, et al. Comparative study of coral sand and silica sand in creep under general stress states. Can Geotech J, 2017, 54(11): 1601 doi: 10.1139/cgj-2016-0295 [19] Chen B, Chao D J, Wu W J, et al. Study on creep mechanism of coral sand based on particle breakage evolution law. J Vibroengineering, 2019, 21(4): 1201 doi: 10.21595/jve.2019.20625 [20] Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater, 2010, 22(35): 3906 doi: 10.1002/adma.201001068 [21] Kim J, Cote L J, Kim F, et al. Graphene oxide sheets at interfaces. J Am Chem Soc, 2010, 132(23): 8180 doi: 10.1021/ja102777p [22] Gong K, Pan Z, Korayem A H, et al. Reinforcing effects of graphene oxide on Portland cement paste. J Mater Civ Eng, 2015, 27(2): A4014010 doi: 10.1061/(ASCE)MT.1943-5533.0001125 [23] Ma Y F, Zheng Y X, Zhu Y W. Towards industrialization of graphene oxide. Sci China Mater, 2020, 63(10): 1861 doi: 10.1007/s40843-019-9462-9 [24] Lv S H, Liu J J, Sun T, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Constr Build Mater, 2014, 64: 231 doi: 10.1016/j.conbuildmat.2014.04.061 [25] Lv S H, Ma Y J, Qiu C C, et al. Regulation of GO on cement hydration crystals and its toughening effect. Mag Concr Res, 2013, 65(20): 1246 doi: 10.1680/macr.13.00190 [26] Lv S H, Ting S, Liu J J, et al. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness. Cryst Eng Comm, 2014, 16(36): 8508 doi: 10.1039/C4CE00684D [27] Birenboim M, Nadiv R, Alatawna A, et al. Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites. Compos B Eng, 2019, 161: 68 doi: 10.1016/j.compositesb.2018.10.030 [28] Cheng S K, Shui Z H, Sun T, et al. Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete. Appl Clay Sci, 2017, 141: 111 doi: 10.1016/j.clay.2017.02.026 [29] Kolver K, Jensen O M. Internal curing of concrete-state-of-the-art report of RILEM Technical Committee 196-ICC[R/OL]. RILEM Publications SARL (2007)[2021-03-06].https://www.rilem.net/publication/publication/105 [30] Fang Y. The Concrete Resistance to Chloride Ion Permeability Test Method Research and Engineering Case Analysis [Dissertation]. Hangzhou: Zhejiang University, 2018方毅. 混凝土抗氯離子滲透性能試驗方法研究及工程案例分析[學位論文]. 杭州: 浙江大學, 2018 [31] Han J G, Li K F. Adaptability of the evaluation methods of concrete anti-chloride penetration ability. J Build Mater, 2015, 18(4): 704 doi: 10.3969/j.issn.1007-9629.2015.04.029韓建國, 李克非. 混凝土抗氯離子滲透能力測試方法的適用性. 建筑材料學報, 2015, 18(4):704 doi: 10.3969/j.issn.1007-9629.2015.04.029 [32] Yang L F, Zhou M, Chen Z. Quantitative analysis and design for durability of marine concrete structures. China Civ Eng J, 2014, 47(10): 70 doi: 10.15951/j.tmgcxb.2014.10.023楊綠峰, 周明, 陳正. 海洋混凝土結構耐久性定量分析與設計. 土木工程學報, 2014, 47(10):70 doi: 10.15951/j.tmgcxb.2014.10.023 [33] Yang H, Liu H F, Sun S, et al. Influence of fly ash and desert sand on the chloride permeability of concrete. Concrete, 2019(12): 95楊浩, 劉海峰, 孫帥, 等. 粉煤灰及沙漠砂對混凝土抗氯離子滲透性能影響. 混凝土, 2019(12):95 [34] Yuan R Z. Cementitious Materials Science. Wuhan: Wuhan University of Technology Press, 1996袁潤章. 膠凝材料學. 武漢: 武漢理工大學出版社, 1996 [35] Lü S H, Sun T, Liu J J, et al. Toughening effect and mechanism of graphene oxide nanosheets on cement matrix composites. Acta Mater Compos Sin, 2014, 31(3): 644 doi: 10.13801/j.cnki.fhclxb.2014.03.016呂生華, 孫婷, 劉晶晶, 等. 氧化石墨烯納米片層對水泥基復合材料的增韌效果及作用機制. 復合材料學報, 2014, 31(3):644 doi: 10.13801/j.cnki.fhclxb.2014.03.016 [36] Djerbi A, Bonnet S, Khelidj A, et al. Influence of traversing crack on chloride diffusion into concrete. Cem Concr Res, 2008, 38(6): 877 doi: 10.1016/j.cemconres.2007.10.007 [37] Jang S Y, Kim B S, Oh B H. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests. Cem Concr Res, 2011, 41(1): 9 doi: 10.1016/j.cemconres.2010.08.018 [38] Ismail M, Toumi A, Fran?ois R, et al. Effect of crack opening on the local diffusion of chloride in cracked mortar samples. Cem Concr Res, 2008, 38(8-9): 1106 doi: 10.1016/j.cemconres.2008.03.009 -