<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

GO改性珊瑚砂水泥結石體氯離子阻滯機理研究

陳賓 何山強 賀勇 朱彥武 趙延林 胡惠華 張可能

陳賓, 何山強, 賀勇, 朱彥武, 趙延林, 胡惠華, 張可能. GO改性珊瑚砂水泥結石體氯離子阻滯機理研究[J]. 工程科學學報, 2022, 44(11): 1956-1965. doi: 10.13374/j.issn2095-9389.2021.03.06.001
引用本文: 陳賓, 何山強, 賀勇, 朱彥武, 趙延林, 胡惠華, 張可能. GO改性珊瑚砂水泥結石體氯離子阻滯機理研究[J]. 工程科學學報, 2022, 44(11): 1956-1965. doi: 10.13374/j.issn2095-9389.2021.03.06.001
CHEN Bin, HE Shan-qiang, HE Yong, ZHU Yan-wu, ZHAO Yan-lin, HU Hui-hua, ZHANG Ke-neng. Chloride retention mechanism of coral sand cement stones modified by graphene oxide[J]. Chinese Journal of Engineering, 2022, 44(11): 1956-1965. doi: 10.13374/j.issn2095-9389.2021.03.06.001
Citation: CHEN Bin, HE Shan-qiang, HE Yong, ZHU Yan-wu, ZHAO Yan-lin, HU Hui-hua, ZHANG Ke-neng. Chloride retention mechanism of coral sand cement stones modified by graphene oxide[J]. Chinese Journal of Engineering, 2022, 44(11): 1956-1965. doi: 10.13374/j.issn2095-9389.2021.03.06.001

GO改性珊瑚砂水泥結石體氯離子阻滯機理研究

doi: 10.13374/j.issn2095-9389.2021.03.06.001
基金項目: 湖南省創新性省份建設專項資助項目(2019RS1059);國家自然科學基金資助項目(51774131, 41972282)
詳細信息
    通訊作者:

    E-mail: heyong18@csu.edu.cn

  • 中圖分類號: TU449

Chloride retention mechanism of coral sand cement stones modified by graphene oxide

More Information
  • 摘要: 珊瑚砂地基遠離大陸,在海洋環境下通過注漿或攪拌樁等工藝注入極少摻量氧化石墨烯(GO)的水泥漿液改善珊瑚砂地基,可以大幅提升珊瑚砂水泥結石體阻滯氯離子滲透性能。本文通過快速氯離子遷移試驗(RCM方法)、掃描電鏡(SEM)實驗和Image-Pro Plus圖像處理等,在對比分析河砂與珊瑚砂顆粒形態差異以及摻入GO前后微觀結構變化規律的基礎上,揭示了GO改性珊瑚砂水泥結石體阻滯氯離子滲透的作用機理。試驗結果表明:顆粒棱角度高、形狀不規則、多孔且含有內孔隙等原因是相同工藝條件下珊瑚砂水泥結石體阻滯氯離子滲透性遠低于河砂水泥結石體的主要原因;當摻入質量分數0.02%的GO后,28 d和56 d的珊瑚砂水泥結石體阻滯氯離子滲透性能指標提升程度最高(39.43%與48.93%),并與相同工藝條件下無添加GO的普通河砂水泥結石體指標相近;珊瑚砂水泥結石體阻滯氯離子滲透性能提升程度與GO摻量有關,兩者先呈正相關而后呈負相關,0.02%質量分數為本文最佳試驗摻入量;調控水泥水化產物生成規整有序的水化晶體形狀,改善界面過渡區的形貌,填充內部裂紋的空間,修復孔隙的形貌特征是摻入GO影響珊瑚砂水泥結石體抗氯離子滲透性的主要原因。

     

  • 圖  1  試驗用砂.(a)珊瑚砂宏觀圖;(b)河砂宏觀圖;(c)珊瑚砂微觀圖;(d)河砂微觀圖

    Figure  1.  Sand used in the test: (a) macroview of coral sand; (b) macroview of river sand; (c) microview of coral sand; (d) microview of river sand

    圖  2  珊瑚砂的顆粒級配曲線

    Figure  2.  Coral sand particle size distribution curve

    圖  3  GO的AFM圖像.(a)GO的AFM形貌圖像;(b)GO的三維形貌

    Figure  3.  AFM image of GO: (a) AFM topography image of GO; (b) three-dimensional topography of GO

    圖  4  試塊模具

    Figure  4.  Test block mold

    圖  5  氯離子遷移系數測定展示圖.(a)氯離子遷移系數測定儀;(b)測定方法示意圖

    Figure  5.  Display diagram of the determination of chloride ion mobility coefficient: (a) chloride ion mobility coefficient tester; (b) schematic diagram of the measurement method

    圖  6  不同GO摻量試塊的氯離子遷移系數圖

    Figure  6.  Chloride ion mobility coefficient of the specimen with different GO contents

    圖  7  不同GO摻量28 d試塊的SEM圖.(a)0% GO,1000×,河砂試塊;(b)0.03% GO,1000×,河砂試塊;(c)0% GO,1000×,珊瑚砂試塊;(d)0.02% GO,1000×,珊瑚砂試塊;(e)0% GO,5000×,珊瑚砂試塊;(f)0.02% GO,5000×,珊瑚砂試塊

    Figure  7.  SEM image of the 28 d coral sand specimen with different GO mass fractions: (a) 0% GO, 1000×, river sand cement stones; (b) 0.03% GO, 1000×, river sand cement stones; (c) 0% GO, 1000×, coral sand cement stones; (d) 0.02% GO, 1000×, coral sand cement stones; (e) 0% GO, 5000×, coral sand cement stones; (f) 0.02% GO, 5000×, coral sand cement stones

    圖  8  不同GO質量分數的珊瑚砂試塊和河砂試塊SEM圖 (a)0% GO珊瑚砂試塊;(b)0% GO河砂試塊;(c)0.02% GO珊瑚砂試塊;(d)0.03% GO河砂試塊

    Figure  8.  SEM images of the coral sand specimen and river sand specimen with different GO mass fractions: (a) 0% GO coral sand specimen; (b) 0% GO river sand specimen; (c) 0.02% GO coral sand specimen; (d) 0.03% GO river sand specimen

    圖  9  不同GO質量分數的珊瑚砂試塊和河砂試塊SEM圖.(a)0% GO珊瑚砂試塊;(b)0% GO河砂試塊;(c)0.02% GO珊瑚砂試塊;(d)0.03% GO河砂試塊

    Figure  9.  SEM images of the coral sand specimen and river sand specimen with different GO mass fractions: (a) 0% GO coral sand specimen; (b) 0% GO river sand specimen; (c) 0.02% GO coral sand specimen; (d) 0.03% GO river sand specimen

    圖  10  試塊平均孔隙面積與遷移系數的雙對數關系曲線

    Figure  10.  Logarithmic relationship between the average area of the pore of the test block and migration coefficient

    表  1  水泥的物理及力學性能指標

    Table  1.   Physical and mechanical properties of cement

    Setting times/minStability flexural strengths/MPaCompressive strengths /
    MPa
    InitialFinal3-day28-day3-day28-day
    180240 6.68.932.756.8
    下載: 導出CSV

    表  2  28 d結石體內部平均孔隙直徑

    Table  2.   Pore diameter of the 28 d stone body

    SpecimenDiameter of pore /μmSpecimenDiameter of pore /μm
    CS+28+014.41RS+28+011.87
    CS+28+113.02RS+28+110.65
    CS+28+212.32RS+28+210.22
    CS+28+313.33RS+28+39.67
    CS+28+413.83RS+28+411.75
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang R, Wu W J. Exploration and research on engineering geological properties of coral reefs—engaged in coral reef research for 30 years. J Eng Geol, 2019, 27(1): 202

    汪稔, 吳文娟. 珊瑚礁巖土工程地質的探索與研究——從事珊瑚礁研究30年. 工程地質學報, 2019, 27(1):202
    [2] Ren H Q, Li X P, Long Z L. Theoretical and technical exploration of long-term safety and sustainable development of south island reef project // Proceedings of the 6th National Engineering Safety and Protection Conference. Xiangtan, 2018: 329

    任輝啟, 李新平, 龍志林. 南海島礁工程長期安全與可持續發展保障理論及技術探索//第六屆全國工程安全與防護學術會議論文集. 湘潭, 2018: 329
    [3] Han X, Feng J J, Shao Y X, et al. Influence of a steel slag powder-ground fly ash composite supplementary cementitious material on the chloride and sulphate resistance of mass concrete. Powder Technol, 2020, 370: 176 doi: 10.1016/j.powtec.2020.05.015
    [4] Feng L, Zhao P, Wang Z J, et al. Improvement of mechanical properties and chloride ion penetration resistance of cement pastes with the addition of pre-dispersed silica fume. Constr Build Mater, 2018, 182: 483 doi: 10.1016/j.conbuildmat.2018.06.053
    [5] Wang D Z, Zhou X M, Fu B, et al. Chloride ion penetration resistance of concrete containing fly ash and silica fume against combined freezing-thawing and chloride attack. Constr Build Mater, 2018, 169: 740 doi: 10.1016/j.conbuildmat.2018.03.038
    [6] He Y B, Chen B X, Liu S M, et al. Study on resistance of chloride ion penetration in fly ash/silicon ash polypropylene fiber concrete under preloading condition. J Hunan Univ Nat Sci, 2017, 44(3): 97

    何亞伯, 陳保勛, 劉素梅, 等. 預加荷載作用下粉煤灰/硅灰纖維混凝土氯離子滲透性能研究. 湖南大學學報(自然科學版), 2017, 44(3):97
    [7] Zhu Y, Mei H, Chen J J. Experimental study on mineral admixtures and additives on chloride ion penetration resistance of concrete. Bull Chin Ceram Soc, 2016, 35(11): 3844

    朱燕, 梅華, 陳佳佳. 礦物摻合料與化學外加劑影響混凝土抗氯離子滲透性的試驗研究. 硅酸鹽通報, 2016, 35(11):3844
    [8] Mohammed A, Sanjayan J G, Duan W H, et al. Incorporating graphene oxide in cement composites: A study of transport properties. Constr Build Mater, 2015, 84: 341 doi: 10.1016/j.conbuildmat.2015.01.083
    [9] Lv S H, Zhang J, Zhu L L, et al. Preparation of cement composites with ordered microstructures via doping with graphene oxide nanosheets and an investigation of their strength and durability. Materials, 2016, 9(11): 924 doi: 10.3390/ma9110924
    [10] Li X G, Ren Z F, Xu P H, et al. Research on mechanical properties and durability of graphene oxide composite PVA fiber reinforced cement-based material. Bull Chin Ceram Soc, 2018, 37(1): 245

    李相國, 任釗鋒, 徐朋輝, 等. 氧化石墨烯復合PVA纖維增強水泥基材料的力學性能及耐久性研究. 硅酸鹽通報, 2018, 37(1):245
    [11] Du T. Effect of Graphene Oxide on Properties of Cement-Based Composite [Dissertation]. Harbin: Harbin Institute of Technology, 2014

    杜濤. 氧化石墨烯水泥基復合材料性能研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2014
    [12] Wang J. Study of the Effect of Graphene Oxide on Cement Performance and Its Mechanism [Dissertation]. Beijing: Beijing University of Civil Engineering and Architecture, 2017

    王健. 氧化石墨烯對水泥的性能影響及作用機理研究[學位論文]. 北京: 北京建筑大學, 2017
    [13] Shamsaei E, de Souza F B, Yao X P, et al. Graphene-based nanosheets for stronger and more durable concrete: A review. Constr Build Mater, 2018, 183: 642 doi: 10.1016/j.conbuildmat.2018.06.201
    [14] Zhu Y W, Ji H X, Cheng H M, et al. Mass production and industrial applications of graphene materials. Natl Sci Rev, 2018, 5(1): 90 doi: 10.1093/nsr/nwx055
    [15] Kauling A P, Seefeldt A T, Pisoni D P, et al. The worldwide graphene flake production. Adv Mater, 2018, 30(44): 1803784 doi: 10.1002/adma.201803784
    [16] Zhu C Q, Chen H Y, Meng Q S, et al. Microscopic characterization of intra-pore structures of calcareous sands. Rock Soil Mech, 2014, 35(7): 1831

    朱長歧, 陳海洋, 孟慶山, 等. 鈣質砂顆粒內孔隙的結構特征分析. 巖土力學, 2014, 35(7):1831
    [17] Chen B, Hu J M. Fractal behavior of coral sand during creep. Front Earth Sci, 2020, 8: 134 doi: 10.3389/feart.2020.00134
    [18] Lv Y, Li F, Liu Y W, et al. Comparative study of coral sand and silica sand in creep under general stress states. Can Geotech J, 2017, 54(11): 1601 doi: 10.1139/cgj-2016-0295
    [19] Chen B, Chao D J, Wu W J, et al. Study on creep mechanism of coral sand based on particle breakage evolution law. J Vibroengineering, 2019, 21(4): 1201 doi: 10.21595/jve.2019.20625
    [20] Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater, 2010, 22(35): 3906 doi: 10.1002/adma.201001068
    [21] Kim J, Cote L J, Kim F, et al. Graphene oxide sheets at interfaces. J Am Chem Soc, 2010, 132(23): 8180 doi: 10.1021/ja102777p
    [22] Gong K, Pan Z, Korayem A H, et al. Reinforcing effects of graphene oxide on Portland cement paste. J Mater Civ Eng, 2015, 27(2): A4014010 doi: 10.1061/(ASCE)MT.1943-5533.0001125
    [23] Ma Y F, Zheng Y X, Zhu Y W. Towards industrialization of graphene oxide. Sci China Mater, 2020, 63(10): 1861 doi: 10.1007/s40843-019-9462-9
    [24] Lv S H, Liu J J, Sun T, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Constr Build Mater, 2014, 64: 231 doi: 10.1016/j.conbuildmat.2014.04.061
    [25] Lv S H, Ma Y J, Qiu C C, et al. Regulation of GO on cement hydration crystals and its toughening effect. Mag Concr Res, 2013, 65(20): 1246 doi: 10.1680/macr.13.00190
    [26] Lv S H, Ting S, Liu J J, et al. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness. Cryst Eng Comm, 2014, 16(36): 8508 doi: 10.1039/C4CE00684D
    [27] Birenboim M, Nadiv R, Alatawna A, et al. Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites. Compos B Eng, 2019, 161: 68 doi: 10.1016/j.compositesb.2018.10.030
    [28] Cheng S K, Shui Z H, Sun T, et al. Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete. Appl Clay Sci, 2017, 141: 111 doi: 10.1016/j.clay.2017.02.026
    [29] Kolver K, Jensen O M. Internal curing of concrete-state-of-the-art report of RILEM Technical Committee 196-ICC[R/OL]. RILEM Publications SARL (2007)[2021-03-06].https://www.rilem.net/publication/publication/105
    [30] Fang Y. The Concrete Resistance to Chloride Ion Permeability Test Method Research and Engineering Case Analysis [Dissertation]. Hangzhou: Zhejiang University, 2018

    方毅. 混凝土抗氯離子滲透性能試驗方法研究及工程案例分析[學位論文]. 杭州: 浙江大學, 2018
    [31] Han J G, Li K F. Adaptability of the evaluation methods of concrete anti-chloride penetration ability. J Build Mater, 2015, 18(4): 704 doi: 10.3969/j.issn.1007-9629.2015.04.029

    韓建國, 李克非. 混凝土抗氯離子滲透能力測試方法的適用性. 建筑材料學報, 2015, 18(4):704 doi: 10.3969/j.issn.1007-9629.2015.04.029
    [32] Yang L F, Zhou M, Chen Z. Quantitative analysis and design for durability of marine concrete structures. China Civ Eng J, 2014, 47(10): 70 doi: 10.15951/j.tmgcxb.2014.10.023

    楊綠峰, 周明, 陳正. 海洋混凝土結構耐久性定量分析與設計. 土木工程學報, 2014, 47(10):70 doi: 10.15951/j.tmgcxb.2014.10.023
    [33] Yang H, Liu H F, Sun S, et al. Influence of fly ash and desert sand on the chloride permeability of concrete. Concrete, 2019(12): 95

    楊浩, 劉海峰, 孫帥, 等. 粉煤灰及沙漠砂對混凝土抗氯離子滲透性能影響. 混凝土, 2019(12):95
    [34] Yuan R Z. Cementitious Materials Science. Wuhan: Wuhan University of Technology Press, 1996

    袁潤章. 膠凝材料學. 武漢: 武漢理工大學出版社, 1996
    [35] Lü S H, Sun T, Liu J J, et al. Toughening effect and mechanism of graphene oxide nanosheets on cement matrix composites. Acta Mater Compos Sin, 2014, 31(3): 644 doi: 10.13801/j.cnki.fhclxb.2014.03.016

    呂生華, 孫婷, 劉晶晶, 等. 氧化石墨烯納米片層對水泥基復合材料的增韌效果及作用機制. 復合材料學報, 2014, 31(3):644 doi: 10.13801/j.cnki.fhclxb.2014.03.016
    [36] Djerbi A, Bonnet S, Khelidj A, et al. Influence of traversing crack on chloride diffusion into concrete. Cem Concr Res, 2008, 38(6): 877 doi: 10.1016/j.cemconres.2007.10.007
    [37] Jang S Y, Kim B S, Oh B H. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests. Cem Concr Res, 2011, 41(1): 9 doi: 10.1016/j.cemconres.2010.08.018
    [38] Ismail M, Toumi A, Fran?ois R, et al. Effect of crack opening on the local diffusion of chloride in cracked mortar samples. Cem Concr Res, 2008, 38(8-9): 1106 doi: 10.1016/j.cemconres.2008.03.009
  • 加載中
圖(10) / 表(2)
計量
  • 文章訪問數:  452
  • HTML全文瀏覽量:  229
  • PDF下載量:  38
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-03-06
  • 網絡出版日期:  2021-05-06
  • 刊出日期:  2022-11-01

目錄

    /

    返回文章
    返回