<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

含Ti不銹鋼冶金工藝進展

王啟明 成國光

王啟明, 成國光. 含Ti不銹鋼冶金工藝進展[J]. 工程科學學報, 2021, 43(11): 1447-1458. doi: 10.13374/j.issn2095-9389.2021.03.03.003
引用本文: 王啟明, 成國光. 含Ti不銹鋼冶金工藝進展[J]. 工程科學學報, 2021, 43(11): 1447-1458. doi: 10.13374/j.issn2095-9389.2021.03.03.003
WANG Qi-ming, CHENG Guo-guang. Metallurgy development of Ti-stabilized stainless steel[J]. Chinese Journal of Engineering, 2021, 43(11): 1447-1458. doi: 10.13374/j.issn2095-9389.2021.03.03.003
Citation: WANG Qi-ming, CHENG Guo-guang. Metallurgy development of Ti-stabilized stainless steel[J]. Chinese Journal of Engineering, 2021, 43(11): 1447-1458. doi: 10.13374/j.issn2095-9389.2021.03.03.003

含Ti不銹鋼冶金工藝進展

doi: 10.13374/j.issn2095-9389.2021.03.03.003
基金項目: 國家自然科學基金資助項目(51874034)
詳細信息
    通訊作者:

    E-mail: chengguoguang@metall.ustb.edu.cn

  • 中圖分類號: TG142.71

Metallurgy development of Ti-stabilized stainless steel

More Information
  • 摘要: 圍繞含Ti不銹鋼冶金工藝的研究進展,從冶金物理化學基礎、氧化物和TiN夾雜的形成與控制、凝固過程TiN復合核心和Ti元素對不銹鋼鑄件力學性能的影響等方面進行了總結和討論。主要的研究進展為:含Ti不銹鋼在冶煉過程生成的Al2O3、鎂鋁尖晶石、(MgO?Al2O3)rich?CaO?TiOx等高熔點氧化物夾雜是導致含鈦不銹鋼連鑄水口堵塞的主要原因;優化的Al、Ca、Ti的添加方式和爐渣控制工藝是夾雜物減少和低熔點化的重要手段;TiN夾雜的析出、擴散長大和碰撞聚合的基本規律是關注的熱點,鋼液中大尺寸氧化物夾雜會促進TiN團簇的形成;通過嚴格控制凝固過程TiN或氧化物-TiN復合核心能夠促進δ-Fe異質形核,提高連鑄坯等軸晶率;固溶Ti元素能提高奧氏體或雙相不銹鋼中鐵素體含量,提升不銹鋼鑄件的拉伸性能。

     

  • 圖  1  不銹鋼中TiN穩定相圖。(a)18Cr鐵素體不銹鋼;(b)18Cr–8Ni奧氏體不銹鋼

    Figure  1.  Stability diagram of TiN in stainless steel: (a) 18Cr stainless steel; (b) 18Cr–8Ni stainless steel

    圖  2  水口堵塞物形貌及成分

    Figure  2.  Morphology and composition of the deposits in the submerged entry nozzle

    圖  3  1600 ℃時鐵素體不銹鋼中Al?Ti?O平衡相圖。(a)11Cr鐵素體不銹鋼;(b)20Cr鐵素體不銹鋼

    Figure  3.  Stability diagram of the Al–Ti–O system in stainless steel at 600 ℃: (a) Fe–11Cr stainless steel; (b) Fe–20Cr stainless steel

    圖  4  1600 ℃時鐵素體不銹鋼中Al?Mg?O平衡相圖。(a)Fe?20Cr?Al?Mg?O;(b)加入5×10?6Ca 的Fe?20Cr?Al?Mg?O

    Figure  4.  Stability diagram of the Al–Mg–O system in stainless steel at 1600 ℃: (a) Fe–20Cr–Al–Mg–O; (b) Fe–20Cr–Al–Mg–O containing 5×10?6Ca

    圖  5  不同冷卻速度及Ti,N質量分數下,K418合金凝固過程中TiN夾雜的長大行為

    Figure  5.  Growth of TiN during the solidification of K418 alloy with different cooling rates, contents of Ti and N

    圖  6  TiN團簇(a)和MgO?TiN復合夾雜(b)

    Figure  6.  TiN clusters (a) and MgO–TiN complex inclusions (b)

    圖  7  大尺寸氧化物和TiN團簇

    Figure  7.  Macro-inclusions and TiN clusters

    圖  8  Ti合金化對鑄態組織的影響。(a)不含Ti的鑄錠;(b)含Ti鑄錠

    Figure  8.  As-cast structure of ferritic stainless steel: (a) without Ti addition; (b) with Ti addition

    圖  9  快速冷卻后液滴組織形貌(a)和形核核心(b, c)

    Figure  9.  Microstructure of ferritic stainless steel droplet after rapid cooling (a) and heterogeneous nucleation of δ-Fe (b, c)

    圖  10  不同Ti質量分數的Fe–20Cr–8Ni不銹鋼微觀組織。(a, b)0.0036% Ti;(c, d)0.2%Ti;(e, f)0.45% Ti

    Figure  10.  Microstructure of Fe–20Cr–8Ni stainless steel with different Ti contents: (a, b) 0.0036% Ti; (c, d) 0.2% Ti; (e, f) 0.45% Ti

    表  1  350 ℃時不同Ti含量鑄錠的拉伸性能

    Table  1.   Tensile properties of ingots with different Ti contents at 350 ℃

    IngotMass fraction
    of Ti/ %
    Yield strength /
    MPa
    Ultimate tensile
    strength / MPa
    Tensile
    elongation /%
    S10.0036207.41452.3131.20
    S20.20229.11471.2730.92
    S30.45238.89494.8731.20
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Huang X Z, Wang D, Yang Y T. Effect of precipitation on intergranular corrosion resistance of 430 ferritic stainless steel. J Iron Steel Res Int, 2015, 22(11): 1062 doi: 10.1016/S1006-706X(15)30113-8
    [2] Janis J, Karasev A, Nakajima K, et al. Effect of secondary nitride particles on grain growth in a Fe-20 mass% Cr alloy deoxidised with Ti and Zr. ISIJ Int, 2013, 53(3): 476 doi: 10.2355/isijinternational.53.476
    [3] Janis J, Nakajima K, Karasev A, et al. An experimental study on the influence of particles on grain boundary migration. J Mater Sci, 2010, 45(8): 2233 doi: 10.1007/s10853-009-3908-7
    [4] Shinoda T, Ishii T, Tanaka R, et al. Effects of some carbide stabilizing elements on creep-rupture strength and microstructural changes of 18-10 austenitic steel. Metall Trans, 1973, 4(5): 1213 doi: 10.1007/BF02644514
    [5] Li J Y, Cheng G G, Ruan Q, et al. Characteristics of nozzle clogging and evolution of oxide inclusion for Al-killed Ti-stabilized 18Cr stainless steel. Metall Mater Trans B, 2019, 50(6): 2769 doi: 10.1007/s11663-019-01708-8
    [6] Li J Y. Research on Formation Mechanism of Inclusion and Refining Technology for Ultra-Pure Ferrite Stainless Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

    李璟宇. 超純鐵素體不銹鋼夾雜物形成機理及精煉工藝研究[學位論文]. 北京: 北京科技大學, 2020
    [7] Cha W Y, Nagasaka T, Miki T, et al. Equilibrium between titanium and oxygen in liquid Fe?Ti alloy coexisted with titanium oxides at 1873 K. ISIJ Int, 2006, 46(7): 996 doi: 10.2355/isijinternational.46.996
    [8] Pak J J, Jo J O, Kim S I, et al. Thermodynamics of titanium and oxygen dissolved in liquid iron equilibrated with titanium oxides. ISIJ Int, 2007, 47(1): 16 doi: 10.2355/isijinternational.47.16
    [9] Seok S H, Miki T, Hino M. Ti deoxidation equilibrium in molten Fe–Cr and Fe–Cr–Ni alloys at temperatures between 1823 K and 1923 K. ISIJ Int, 2009, 49(12): 1850 doi: 10.2355/isijinternational.49.1850
    [10] Pak J J, Jeong Y S, Hong I K, et al. Thermodynamics of TiN formation in Fe?Cr melts. ISIJ Int, 2005, 45(8): 1106 doi: 10.2355/isijinternational.45.1106
    [11] Wada H, Pehlke R D. Nitrogen solution and titanium nitride precipitation in liquid Fe?Cr?Ni alloys. Metall Trans B, 1977, 8(2): 443 doi: 10.1007/BF02696931
    [12] Ozturk B, Matway R, Fruehan R J. Thermodynamics of inclusion formation in Fe?Cr?Ti?N alloys. Metall Mater Trans B, 1995, 26(3): 563 doi: 10.1007/BF02653875
    [13] Hou D, Jiang Z, Dong Y, et al. Thermodynamic design of electroslag remelting slag for high titanium and low aluminium stainless steel based on IMCT. Ironmaking Steelmaking, 2016, 43(7): 517 doi: 10.1080/03019233.2015.1110920
    [14] Jiang Z H, Hou D, Dong Y W, et al. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall Mater Trans B, 2016, 47(2): 1465 doi: 10.1007/s11663-015-0530-8
    [15] Park D C, Jung I H, Rhee P C H, et al. Reoxidation of Al-Ti containing steels by CaO?Al2O3?MgO?SiO2 slag. ISIJ Int, 2004, 44(10): 1669 doi: 10.2355/isijinternational.44.1669
    [16] Kishi M, Inoue R, Suito H. Thermodynamics of oxygen and nitrogen in liquid Fe?20mass%Cr alloy equilibrated with titania-based slags. ISIJ Int, 1994, 34(11): 859 doi: 10.2355/isijinternational.34.859
    [17] Todoroki H, Kobayashi Y. Clogging behavior of CC immersion nozzles in stainless steels in Al deoxidation // Asia Steel 2009. Busan, 2009: 28
    [18] Todoroki H, Kirihara F, Kanbe Y, et al. Effect of compositions of non-metallic inclusions on CC nozzle clogging of a Fe?Cr?Ni?Mo system stainless steel. Tetsu-to-Hagane, 2014, 100(4): 539 doi: 10.2355/tetsutohagane.100.539
    [19] Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel. ISIJ Int, 2004, 44(10): 1653 doi: 10.2355/isijinternational.44.1653
    [20] Gao Y, Sorimachi K. Formation of clogging materials in an immersed nozzle during continuous casting of titanium stabilized stainless steel. ISIJ Int, 1993, 33(2): 291 doi: 10.2355/isijinternational.33.291
    [21] Maddalena R, Rastogi R, Bassem S, et al. Nozzle deposits in titanium treated stainless steels. Iron Steelmaker, 2000, 27(12): 71
    [22] Sun Y H, Bai X F, Yin X, et al. Research on submerged entry nozzles clogging during AISI 321 stainless steel billet casting. Chin J Eng, 2016, 38(Suppl 1): 109

    孫彥輝, 白雪峰, 殷雪, 等. 321不銹鋼小方坯浸入式水口堵塞研究. 工程科學學報, 2016, 38(增刊1): 109
    [23] Jung I H, Eriksson G, Wu P, et al. Thermodynamic modeling of the Al2O3–Ti2O3–TiO2 system and its applications to the Fe–Al–Ti–O inclusion diagram. ISIJ Int, 2009, 49(9): 1290 doi: 10.2355/isijinternational.49.1290
    [24] Wang C, Nuhfer N T, Sridhar S. Transient behavior of inclusion chemistry, shape, and structure in Fe–Al–Ti–O melts: Effect of titanium source and laboratory deoxidation simulation. Metall Mater Trans B, 2009, 40(6): 1005 doi: 10.1007/s11663-009-9267-6
    [25] Li J Y, Cheng G G, Ruan Q, et al. Evolution behaviour of nonmetallic inclusions in Ti-bearing 11Cr stainless steel with calcium treatment. Ironmaking Steelmaking, 2020, 47(1): 31 doi: 10.1080/03019233.2019.1568367
    [26] Li J Y, Cheng G G, Ruan Q, et al. Evolution mechanism of oxide inclusions in titanium-stabilized AISI 443 stainless steel. Metall Mater Trans B, 2018, 49(5): 2357 doi: 10.1007/s11663-018-1331-7
    [27] Bai X F, Sun Y H, Zhang Y M. Transient evolution of inclusions during Al and Ti additions in Fe-20 mass pct Cr alloy. Metals, 2019, 9(6): 702 doi: 10.3390/met9060702
    [28] Pan C, Hu X J, Lin P, et al. Effects of Ti and Al addition on the formation and evolution of inclusions in Fe–17Cr–9Ni austenite stainless steel. Metall Mater Trans B, 2020, 51(6): 3039 doi: 10.1007/s11663-020-01968-9
    [29] Ren Y, Zhang L F, Yang W, et al. Formation and thermodynamics of Mg–Al–Ti–O complex inclusions In Mg–Al–Ti-deoxidized steel. Metall Mater Trans B, 2014, 45(6): 2057 doi: 10.1007/s11663-014-0121-0
    [30] Zhang T S, Liu C J, Jiang M F. Effect of Mg on behavior and particle size of inclusions in Al–Ti deoxidized molten steels. Metall Mater Trans B, 2016, 47(4): 2253 doi: 10.1007/s11663-016-0706-x
    [31] Li J Y, Cheng G G, Ruan Q, et al. Formation and evolution of oxide inclusions in titanium-stabilized 18Cr stainless steel. ISIJ Int, 2018, 58(12): 2280 doi: 10.2355/isijinternational.ISIJINT-2018-332
    [32] Zhang T S, Liu C J, Qiu J Y, et al. Effect of Ti content on the characteristics of inclusions in Al–Ti–Ca complex deoxidized steel. ISIJ Int, 2017, 57(2): 314 doi: 10.2355/isijinternational.ISIJINT-2016-417
    [33] Zhang T, Liu C, Mu H, et al. Inclusion evolution after calcium addition in Ti-bearing Al-kill steel. Ironmaking Steelmaking, 2018, 45(2): 187 doi: 10.1080/03019233.2016.1251749
    [34] Pan C, Hu X J, Zheng J C, et al. Effect of calcium content on inclusions during the ladle furnace refining process of AISI 321 stainless steel. Int J Miner Metall Mater, 2020, 27(11): 1499 doi: 10.1007/s12613-020-1981-8
    [35] Seo C W, Kim S H, Jo S K, et al. Modification and minimization of spinel(Al2O3·xMgO) inclusions formed in Ti-added steel melts. Metall Mater Trans B, 2010, 41(4): 790 doi: 10.1007/s11663-010-9377-1
    [36] Li J Y, Cheng G G, Ruan Q, et al. Optimization of AISI 443 stainless steel cleanness during secondary steelmaking process. Steel Res Int, 2020, 91(11): 2070111 doi: 10.1002/srin.202070111
    [37] Li J Y, Cheng G G, Ruan Q, et al. Evolution mechanism of inclusions in Al-killed, Ti-bearing 11Cr stainless steel with Ca treatment. ISIJ Int, 2018, 58(6): 1042 doi: 10.2355/isijinternational.ISIJINT-2017-565
    [38] Park J H, Kim D S. Effect of CaO–Al2O3–MgO slags on the formation of MgO–Al2O3 inclusions in ferritic stainless steel. Metall Mater Trans B, 2005, 36(4): 495 doi: 10.1007/s11663-005-0041-0
    [39] Park J H, Lee S B, Gaye H R. Thermodynamics of the formation of MgO–Al2O3–TiOx inclusions in Ti-stabilized 11Cr ferritic stainless steel. Metall Mater Trans B, 2008, 39(6): 853 doi: 10.1007/s11663-008-9172-4
    [40] Li J Y, Cheng G G. Effect of CaO–MgO–SiO2–Al2O3–TiO2 slags with different CaF2 contents on inclusions in Ti-stabilized 20Cr stainless steel. ISIJ Int, 2019, 59(11): 2013 doi: 10.2355/isijinternational.ISIJINT-2019-277
    [41] Goto H, Miyazawa K I, Yamaguchi K I, et al. Effect of cooling rate on oxide precipitation during solidification of low carbon steels. ISIJ Int, 1994, 34(5): 414 doi: 10.2355/isijinternational.34.414
    [42] Zhang F, Li G Q, Li Y J, et al. TiN inclusion and its precipitation regularity in ultra-clean ferritic stainless steel. J Wuhan Univ Sci Technol, 2012, 35(5): 347

    張帆, 李光強, 李永軍, 等. 超純鐵素體不銹鋼中TiN夾雜析出的熱力學分析. 武漢科技大學學報, 2012, 35(5):347
    [43] Zhang F, Fan Z J, Xu Z, et al. Kinetics of TiN precipitation in ultra-clean ferritic stainless steel. J Wuhan Univ Sci Technol, 2013, 36(3): 178

    張帆, 范植金, 徐志, 等. 超純鐵素體不銹鋼中TiN析出的動力學分析. 武漢科技大學學報, 2013, 36(3):178
    [44] Yang F, Zhao W C, Hou Y, et al. Precipitation behavior of nitride inclusions in K418 alloy under the continuous unidirectional solidification process. ISIJ Int, 2021, 61(1): 229 doi: 10.2355/isijinternational.ISIJINT-2020-345
    [45] Fu J W, Qiu W X, Nie Q Q, et al. Precipitation of TiN during solidification of AISI 439 stainless steel. J Alloys Compd, 2017, 699: 938 doi: 10.1016/j.jallcom.2017.01.018
    [46] Fu J W, Nie Q Q, Qiu W X, et al. Morphology, orientation relationships and formation mechanism of TiN in Fe–17Cr steel during solidification. Mater Charact, 2017, 133: 176 doi: 10.1016/j.matchar.2017.10.001
    [47] Zhu Q, Xu J L, Xiao H T, et al. Mechanism of TiN precipitation in corrosion resistant alloys. J Iron Steel Res, 2019, 31(11): 1023

    朱晴, 許佳麗, 肖海濤, 等. 耐蝕合金中TiN析出機制. 鋼鐵研究學報, 2019, 31(11):1023
    [48] Medina S F, Chapa M, Valles P, et al. Influence of Ti and N contents on austenite grain control and precipitate size in structural steels. ISIJ Int, 1999, 39(9): 930 doi: 10.2355/isijinternational.39.930
    [49] Yin X, Sun Y H, Yang Y D, et al. Formation of inclusions in Ti-stabilized 17Cr austenitic stainless steel. Metall Mater Trans B, 2016, 47(6): 3274 doi: 10.1007/s11663-016-0681-2
    [50] Liu H L, Li G Q, Li Y J, et al. Non-aqueous electrolysis separation of Ti and Nb bearing inclusions in ultra-pure ferritic stainless steel and analysis of their precipitation behavior. Chin J Process Eng, 2013, 13(1): 33

    劉赫莉, 李光強, 李永軍, 等. 超純鐵素體不銹鋼中含Ti和Nb夾雜物的非水電解分離及其在鋼中的析出行為分析. 過程工程學報, 2013, 13(1):33
    [51] Pervushin G V, Suito H. Effect of primary deoxidation products of Al2O3, ZrO2, Ce2O3 and MgO on TiN precipitation in Fe?10mass%Ni alloy. ISIJ Int, 2001, 41(7): 748 doi: 10.2355/isijinternational.41.748
    [52] Ito A, Suito H, Inoue R. Size distribution of multi-phase deoxidation particles for heterogeneous crystallization of TiN and solidification structure in Ti-added ferritic stainless steel. ISIJ Int, 2012, 52(7): 1196 doi: 10.2355/isijinternational.52.1196
    [53] Kang Y, Mao W M, Chen Y J, et al. Effect of Ti content on grain size and mechanical properties of UNS S44100 ferritic stainless steel. Mater Sci Eng A, 2016, 677: 211 doi: 10.1016/j.msea.2016.08.070
    [54] Michelic S K, Loder D, Reip T, et al. Characterization of TiN, TiC and Ti(C, N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies. Mater Charact, 2015, 100: 61 doi: 10.1016/j.matchar.2014.12.014
    [55] Kellner H E O, Karasev A V, Sundqvist O, et al. Estimation of non-metallic inclusions in industrial Ni based alloys 825. Steel Res Int, 2017, 88(4): 1600024 doi: 10.1002/srin.201600024
    [56] Kellner H E O, Karasev A V, Sundqvist O, et al. TiN particles and clusters during ladle treatments of Ni-based alloy 825 using different stirring modes. ISIJ Int, 2018, 58(2): 292 doi: 10.2355/isijinternational.ISIJINT-2017-355
    [57] Tian Q R, Wang G C, Shang D L, et al. In situ observation of the precipitation, aggregation, and dissolution behaviors of TiN inclusion on the surface of liquid GCr15 bearing steel. Metall Mater Trans B, 2018, 49(6): 3137 doi: 10.1007/s11663-018-1411-8
    [58] Tian Q R, Wang G C, Zhao Y, et al. Precipitation behaviors of TiN inclusion in GCr15 bearing steel billet. Metall Mater Trans B, 2018, 49(3): 1149 doi: 10.1007/s11663-018-1230-y
    [59] Busch J D, DeBarbadillo J J, Krane M J M. Flux entrapment and titanium nitride defects in electroslag remelting of INCOLOY alloys 800 and 825. Metall Mater Trans A, 2013, 44(12): 5295 doi: 10.1007/s11661-013-1659-1
    [60] Park J H. Effect of inclusions on the solidification structures of ferritic stainless steel: Computational and experimental study of inclusion evolution. Calphad, 2011, 35(4): 455 doi: 10.1016/j.calphad.2011.08.004
    [61] Fujimura H, Tsuge S, Komizo Y, et al. Effect of oxide composition on solidification structure of Ti added ferritic stainless steel. Tetsu-to-Hagane, 2001, 87(11): 707 doi: 10.2355/tetsutohagane1955.87.11_707
    [62] Kimura K, Fukumoto S, Shigesato G I, et al. Effect of Mg addition on equiaxed grain formation in ferritic stainless steel. ISIJ Int, 2013, 53(12): 2167 doi: 10.2355/isijinternational.53.2167
    [63] Shi X F. Refining of Solidification Structure of 430 Stainless Steel with TiN Contained Complex Nucleus [Dissertation]. Beijing: University of Science and Technology Beijing, 2011

    施曉芳. 含TiN復合核心細化430不銹鋼凝固組織[學位論文]. 北京: 北京科技大學, 2011
    [64] Hou Y Y, Cheng G G. Effect of Nb on the as-cast structure and compactness degree of ferritic stainless steel dual stabilized by Ti and Nb. ISIJ Int, 2018, 58(12): 2298 doi: 10.2355/isijinternational.ISIJINT-2017-595
    [65] Hou Y Y, Cheng G G, Cheng H J. Effect of oxide composition on the orientation relationship and disregistry in complex nucleus of Ti and Nb stabilized ferritic stainless steel revealed by EBSD measurement. Metall Mater Trans B, 2020, 51(2): 709 doi: 10.1007/s11663-019-01767-x
    [66] Fu J W, Nie Q Q, Qiu W X, et al. Crystallography and growth mechanism of TiN in Fe?17Cr stainless steel during solidification. J Mater Process Technol, 2018, 253: 43 doi: 10.1016/j.jmatprotec.2017.11.003
    [67] Hou Y Y. Effect of Titanium and Niobium on Second Phase Precipitation during Solidification and As-Cast Structure of High-Purity Ferritic Stainless Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

    侯雨陽. 鈦、鈮對超純鐵素體不銹鋼凝固過程第二相析出及對凝固組織的影響[學位論文]. 北京: 北京科技大學, 2020
    [68] Hou Y Y, Cheng G G. Effects of nucleus density and dendritic growth influenced by Ti and Nb on solidification structure of Fe-18 pct Cr ferritic stainless steel. Metall Mater Trans B, 2019, 50(3): 1322 doi: 10.1007/s11663-019-01557-5
    [69] Hou Y Y, Cheng G G. Formation mechanism and nucleation effect of Ti2O3?TiN complex nucleus at solidification front of 18Cr ferritic stainless steel. Metall Mater Trans B, 2019, 50(3): 1351 doi: 10.1007/s11663-019-01540-0
    [70] Son J, Kim S, Lee J, et al. Effect of N addition on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels. Metall Mater Trans A, 2003, 34(8): 1617 doi: 10.1007/s11661-003-0307-6
    [71] Jang Y, Son J, Kim S, et al. Effect of different Cr contents on tensile and corrosion behaviors of 0.13 pct N-containing CD4MCU cast duplex stainless steels. Metall Mater Trans A, 2004, 35(11): 3431
    [72] Jang Y, Kim S, Lee J. Effect of different Mo contents on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels. Metall Mater Trans A, 2005, 36(5): 1229 doi: 10.1007/s11661-005-0215-z
    [73] Wang Q M, Cheng G G, Hou Y Y. Effect of titanium addition on as-cast structure and high-temperature tensile property of 20Cr?8Ni stainless steel for heavy castings. Metals, 2020, 10(4): 529 doi: 10.3390/met10040529
  • 加載中
圖(10) / 表(1)
計量
  • 文章訪問數:  1726
  • HTML全文瀏覽量:  436
  • PDF下載量:  156
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-03-03
  • 網絡出版日期:  2021-06-18
  • 刊出日期:  2021-11-25

目錄

    /

    返回文章
    返回