-
摘要: 圍繞含Ti不銹鋼冶金工藝的研究進展,從冶金物理化學基礎、氧化物和TiN夾雜的形成與控制、凝固過程TiN復合核心和Ti元素對不銹鋼鑄件力學性能的影響等方面進行了總結和討論。主要的研究進展為:含Ti不銹鋼在冶煉過程生成的Al2O3、鎂鋁尖晶石、(MgO?Al2O3)rich?CaO?TiOx等高熔點氧化物夾雜是導致含鈦不銹鋼連鑄水口堵塞的主要原因;優化的Al、Ca、Ti的添加方式和爐渣控制工藝是夾雜物減少和低熔點化的重要手段;TiN夾雜的析出、擴散長大和碰撞聚合的基本規律是關注的熱點,鋼液中大尺寸氧化物夾雜會促進TiN團簇的形成;通過嚴格控制凝固過程TiN或氧化物-TiN復合核心能夠促進δ-Fe異質形核,提高連鑄坯等軸晶率;固溶Ti元素能提高奧氏體或雙相不銹鋼中鐵素體含量,提升不銹鋼鑄件的拉伸性能。Abstract: Titanium is widely used in the manufacture of stainless steel due to its stabilizing ability of carbon and nitrogen, the pinning effect on grain growth, and strengthening effect, which are contributed by the formation of Ti(C, N) with different compositions, sizes, and distributions. Due to the excellent corrosion resistance, formability, and mechanical properties, Ti-bearing stainless steel is widely applied to daily life and priority industries, including petroleum, aerospace, nuclear power, and transportation. However, complex inclusions can be formed after Ti addition in the metallurgy process. Moreover, those inclusions have adverse effects on the metallurgy and the quality of stainless steel, including the clogging of the submerged entry nozzle, layered defects, and surface defects. Therefore, it is important to develop the metallurgy of Ti-stabilized stainless steel. This paper discussed and concluded the investigation development of Ti-bearing stainless steel regarding the fundamentals of metallurgy, the formation and control of oxides and TiN, heterogeneous nucleation, and the influence of Ti on the mechanical properties of stainless steel. First, oxides with high melting points, including Al2O3, spinel, and (MgO?Al2O3)rich?CaO?TiOx, generally cause the clogging of the submerged entry nozzle in the Ti-bearing stainless steel. The optimized addition of Al, Ca, and Ti, as well as the control of slag, can decrease the amount of oxides with a high melting point. Second, the formation and growth of TiN and complex TiN inclusions happen during the cooling and the solidification of the titanium-stabilized stainless steel, which can collide and aggregate to form TiN clusters. Moreover, macro-oxides can promote the formation of TiN clusters. However, TiN or complex TiN inclusions can also work as heterogeneous nuclei for δ-Fe during the solidification of stainless steel and promote the generation of an equiaxed fine-grain structure. In addition to forming compounds, titanium can present as a solid solution state in steel and promote the formation of ferrite in austenitic stainless steel or increase the ferrite fraction in duplex stainless steel with its strong ferrite forming ability, which is beneficial to the improvement of the mechanical properties of stainless steel casting.
-
Key words:
- stainless steel /
- inclusions /
- TiN /
- solidification structure /
- heterogeneous nuclei
-
表 1 350 ℃時不同Ti含量鑄錠的拉伸性能
Table 1. Tensile properties of ingots with different Ti contents at 350 ℃
Ingot Mass fraction
of Ti/ %Yield strength /
MPaUltimate tensile
strength / MPaTensile
elongation /%S1 0.0036 207.41 452.31 31.20 S2 0.20 229.11 471.27 30.92 S3 0.45 238.89 494.87 31.20 www.77susu.com -
參考文獻
[1] Huang X Z, Wang D, Yang Y T. Effect of precipitation on intergranular corrosion resistance of 430 ferritic stainless steel. J Iron Steel Res Int, 2015, 22(11): 1062 doi: 10.1016/S1006-706X(15)30113-8 [2] Janis J, Karasev A, Nakajima K, et al. Effect of secondary nitride particles on grain growth in a Fe-20 mass% Cr alloy deoxidised with Ti and Zr. ISIJ Int, 2013, 53(3): 476 doi: 10.2355/isijinternational.53.476 [3] Janis J, Nakajima K, Karasev A, et al. An experimental study on the influence of particles on grain boundary migration. J Mater Sci, 2010, 45(8): 2233 doi: 10.1007/s10853-009-3908-7 [4] Shinoda T, Ishii T, Tanaka R, et al. Effects of some carbide stabilizing elements on creep-rupture strength and microstructural changes of 18-10 austenitic steel. Metall Trans, 1973, 4(5): 1213 doi: 10.1007/BF02644514 [5] Li J Y, Cheng G G, Ruan Q, et al. Characteristics of nozzle clogging and evolution of oxide inclusion for Al-killed Ti-stabilized 18Cr stainless steel. Metall Mater Trans B, 2019, 50(6): 2769 doi: 10.1007/s11663-019-01708-8 [6] Li J Y. Research on Formation Mechanism of Inclusion and Refining Technology for Ultra-Pure Ferrite Stainless Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2020李璟宇. 超純鐵素體不銹鋼夾雜物形成機理及精煉工藝研究[學位論文]. 北京: 北京科技大學, 2020 [7] Cha W Y, Nagasaka T, Miki T, et al. Equilibrium between titanium and oxygen in liquid Fe?Ti alloy coexisted with titanium oxides at 1873 K. ISIJ Int, 2006, 46(7): 996 doi: 10.2355/isijinternational.46.996 [8] Pak J J, Jo J O, Kim S I, et al. Thermodynamics of titanium and oxygen dissolved in liquid iron equilibrated with titanium oxides. ISIJ Int, 2007, 47(1): 16 doi: 10.2355/isijinternational.47.16 [9] Seok S H, Miki T, Hino M. Ti deoxidation equilibrium in molten Fe–Cr and Fe–Cr–Ni alloys at temperatures between 1823 K and 1923 K. ISIJ Int, 2009, 49(12): 1850 doi: 10.2355/isijinternational.49.1850 [10] Pak J J, Jeong Y S, Hong I K, et al. Thermodynamics of TiN formation in Fe?Cr melts. ISIJ Int, 2005, 45(8): 1106 doi: 10.2355/isijinternational.45.1106 [11] Wada H, Pehlke R D. Nitrogen solution and titanium nitride precipitation in liquid Fe?Cr?Ni alloys. Metall Trans B, 1977, 8(2): 443 doi: 10.1007/BF02696931 [12] Ozturk B, Matway R, Fruehan R J. Thermodynamics of inclusion formation in Fe?Cr?Ti?N alloys. Metall Mater Trans B, 1995, 26(3): 563 doi: 10.1007/BF02653875 [13] Hou D, Jiang Z, Dong Y, et al. Thermodynamic design of electroslag remelting slag for high titanium and low aluminium stainless steel based on IMCT. Ironmaking Steelmaking, 2016, 43(7): 517 doi: 10.1080/03019233.2015.1110920 [14] Jiang Z H, Hou D, Dong Y W, et al. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall Mater Trans B, 2016, 47(2): 1465 doi: 10.1007/s11663-015-0530-8 [15] Park D C, Jung I H, Rhee P C H, et al. Reoxidation of Al-Ti containing steels by CaO?Al2O3?MgO?SiO2 slag. ISIJ Int, 2004, 44(10): 1669 doi: 10.2355/isijinternational.44.1669 [16] Kishi M, Inoue R, Suito H. Thermodynamics of oxygen and nitrogen in liquid Fe?20mass%Cr alloy equilibrated with titania-based slags. ISIJ Int, 1994, 34(11): 859 doi: 10.2355/isijinternational.34.859 [17] Todoroki H, Kobayashi Y. Clogging behavior of CC immersion nozzles in stainless steels in Al deoxidation // Asia Steel 2009. Busan, 2009: 28 [18] Todoroki H, Kirihara F, Kanbe Y, et al. Effect of compositions of non-metallic inclusions on CC nozzle clogging of a Fe?Cr?Ni?Mo system stainless steel. Tetsu-to-Hagane, 2014, 100(4): 539 doi: 10.2355/tetsutohagane.100.539 [19] Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel. ISIJ Int, 2004, 44(10): 1653 doi: 10.2355/isijinternational.44.1653 [20] Gao Y, Sorimachi K. Formation of clogging materials in an immersed nozzle during continuous casting of titanium stabilized stainless steel. ISIJ Int, 1993, 33(2): 291 doi: 10.2355/isijinternational.33.291 [21] Maddalena R, Rastogi R, Bassem S, et al. Nozzle deposits in titanium treated stainless steels. Iron Steelmaker, 2000, 27(12): 71 [22] Sun Y H, Bai X F, Yin X, et al. Research on submerged entry nozzles clogging during AISI 321 stainless steel billet casting. Chin J Eng, 2016, 38(Suppl 1): 109孫彥輝, 白雪峰, 殷雪, 等. 321不銹鋼小方坯浸入式水口堵塞研究. 工程科學學報, 2016, 38(增刊1): 109 [23] Jung I H, Eriksson G, Wu P, et al. Thermodynamic modeling of the Al2O3–Ti2O3–TiO2 system and its applications to the Fe–Al–Ti–O inclusion diagram. ISIJ Int, 2009, 49(9): 1290 doi: 10.2355/isijinternational.49.1290 [24] Wang C, Nuhfer N T, Sridhar S. Transient behavior of inclusion chemistry, shape, and structure in Fe–Al–Ti–O melts: Effect of titanium source and laboratory deoxidation simulation. Metall Mater Trans B, 2009, 40(6): 1005 doi: 10.1007/s11663-009-9267-6 [25] Li J Y, Cheng G G, Ruan Q, et al. Evolution behaviour of nonmetallic inclusions in Ti-bearing 11Cr stainless steel with calcium treatment. Ironmaking Steelmaking, 2020, 47(1): 31 doi: 10.1080/03019233.2019.1568367 [26] Li J Y, Cheng G G, Ruan Q, et al. Evolution mechanism of oxide inclusions in titanium-stabilized AISI 443 stainless steel. Metall Mater Trans B, 2018, 49(5): 2357 doi: 10.1007/s11663-018-1331-7 [27] Bai X F, Sun Y H, Zhang Y M. Transient evolution of inclusions during Al and Ti additions in Fe-20 mass pct Cr alloy. Metals, 2019, 9(6): 702 doi: 10.3390/met9060702 [28] Pan C, Hu X J, Lin P, et al. Effects of Ti and Al addition on the formation and evolution of inclusions in Fe–17Cr–9Ni austenite stainless steel. Metall Mater Trans B, 2020, 51(6): 3039 doi: 10.1007/s11663-020-01968-9 [29] Ren Y, Zhang L F, Yang W, et al. Formation and thermodynamics of Mg–Al–Ti–O complex inclusions In Mg–Al–Ti-deoxidized steel. Metall Mater Trans B, 2014, 45(6): 2057 doi: 10.1007/s11663-014-0121-0 [30] Zhang T S, Liu C J, Jiang M F. Effect of Mg on behavior and particle size of inclusions in Al–Ti deoxidized molten steels. Metall Mater Trans B, 2016, 47(4): 2253 doi: 10.1007/s11663-016-0706-x [31] Li J Y, Cheng G G, Ruan Q, et al. Formation and evolution of oxide inclusions in titanium-stabilized 18Cr stainless steel. ISIJ Int, 2018, 58(12): 2280 doi: 10.2355/isijinternational.ISIJINT-2018-332 [32] Zhang T S, Liu C J, Qiu J Y, et al. Effect of Ti content on the characteristics of inclusions in Al–Ti–Ca complex deoxidized steel. ISIJ Int, 2017, 57(2): 314 doi: 10.2355/isijinternational.ISIJINT-2016-417 [33] Zhang T, Liu C, Mu H, et al. Inclusion evolution after calcium addition in Ti-bearing Al-kill steel. Ironmaking Steelmaking, 2018, 45(2): 187 doi: 10.1080/03019233.2016.1251749 [34] Pan C, Hu X J, Zheng J C, et al. Effect of calcium content on inclusions during the ladle furnace refining process of AISI 321 stainless steel. Int J Miner Metall Mater, 2020, 27(11): 1499 doi: 10.1007/s12613-020-1981-8 [35] Seo C W, Kim S H, Jo S K, et al. Modification and minimization of spinel(Al2O3·xMgO) inclusions formed in Ti-added steel melts. Metall Mater Trans B, 2010, 41(4): 790 doi: 10.1007/s11663-010-9377-1 [36] Li J Y, Cheng G G, Ruan Q, et al. Optimization of AISI 443 stainless steel cleanness during secondary steelmaking process. Steel Res Int, 2020, 91(11): 2070111 doi: 10.1002/srin.202070111 [37] Li J Y, Cheng G G, Ruan Q, et al. Evolution mechanism of inclusions in Al-killed, Ti-bearing 11Cr stainless steel with Ca treatment. ISIJ Int, 2018, 58(6): 1042 doi: 10.2355/isijinternational.ISIJINT-2017-565 [38] Park J H, Kim D S. Effect of CaO–Al2O3–MgO slags on the formation of MgO–Al2O3 inclusions in ferritic stainless steel. Metall Mater Trans B, 2005, 36(4): 495 doi: 10.1007/s11663-005-0041-0 [39] Park J H, Lee S B, Gaye H R. Thermodynamics of the formation of MgO–Al2O3–TiOx inclusions in Ti-stabilized 11Cr ferritic stainless steel. Metall Mater Trans B, 2008, 39(6): 853 doi: 10.1007/s11663-008-9172-4 [40] Li J Y, Cheng G G. Effect of CaO–MgO–SiO2–Al2O3–TiO2 slags with different CaF2 contents on inclusions in Ti-stabilized 20Cr stainless steel. ISIJ Int, 2019, 59(11): 2013 doi: 10.2355/isijinternational.ISIJINT-2019-277 [41] Goto H, Miyazawa K I, Yamaguchi K I, et al. Effect of cooling rate on oxide precipitation during solidification of low carbon steels. ISIJ Int, 1994, 34(5): 414 doi: 10.2355/isijinternational.34.414 [42] Zhang F, Li G Q, Li Y J, et al. TiN inclusion and its precipitation regularity in ultra-clean ferritic stainless steel. J Wuhan Univ Sci Technol, 2012, 35(5): 347張帆, 李光強, 李永軍, 等. 超純鐵素體不銹鋼中TiN夾雜析出的熱力學分析. 武漢科技大學學報, 2012, 35(5):347 [43] Zhang F, Fan Z J, Xu Z, et al. Kinetics of TiN precipitation in ultra-clean ferritic stainless steel. J Wuhan Univ Sci Technol, 2013, 36(3): 178張帆, 范植金, 徐志, 等. 超純鐵素體不銹鋼中TiN析出的動力學分析. 武漢科技大學學報, 2013, 36(3):178 [44] Yang F, Zhao W C, Hou Y, et al. Precipitation behavior of nitride inclusions in K418 alloy under the continuous unidirectional solidification process. ISIJ Int, 2021, 61(1): 229 doi: 10.2355/isijinternational.ISIJINT-2020-345 [45] Fu J W, Qiu W X, Nie Q Q, et al. Precipitation of TiN during solidification of AISI 439 stainless steel. J Alloys Compd, 2017, 699: 938 doi: 10.1016/j.jallcom.2017.01.018 [46] Fu J W, Nie Q Q, Qiu W X, et al. Morphology, orientation relationships and formation mechanism of TiN in Fe–17Cr steel during solidification. Mater Charact, 2017, 133: 176 doi: 10.1016/j.matchar.2017.10.001 [47] Zhu Q, Xu J L, Xiao H T, et al. Mechanism of TiN precipitation in corrosion resistant alloys. J Iron Steel Res, 2019, 31(11): 1023朱晴, 許佳麗, 肖海濤, 等. 耐蝕合金中TiN析出機制. 鋼鐵研究學報, 2019, 31(11):1023 [48] Medina S F, Chapa M, Valles P, et al. Influence of Ti and N contents on austenite grain control and precipitate size in structural steels. ISIJ Int, 1999, 39(9): 930 doi: 10.2355/isijinternational.39.930 [49] Yin X, Sun Y H, Yang Y D, et al. Formation of inclusions in Ti-stabilized 17Cr austenitic stainless steel. Metall Mater Trans B, 2016, 47(6): 3274 doi: 10.1007/s11663-016-0681-2 [50] Liu H L, Li G Q, Li Y J, et al. Non-aqueous electrolysis separation of Ti and Nb bearing inclusions in ultra-pure ferritic stainless steel and analysis of their precipitation behavior. Chin J Process Eng, 2013, 13(1): 33劉赫莉, 李光強, 李永軍, 等. 超純鐵素體不銹鋼中含Ti和Nb夾雜物的非水電解分離及其在鋼中的析出行為分析. 過程工程學報, 2013, 13(1):33 [51] Pervushin G V, Suito H. Effect of primary deoxidation products of Al2O3, ZrO2, Ce2O3 and MgO on TiN precipitation in Fe?10mass%Ni alloy. ISIJ Int, 2001, 41(7): 748 doi: 10.2355/isijinternational.41.748 [52] Ito A, Suito H, Inoue R. Size distribution of multi-phase deoxidation particles for heterogeneous crystallization of TiN and solidification structure in Ti-added ferritic stainless steel. ISIJ Int, 2012, 52(7): 1196 doi: 10.2355/isijinternational.52.1196 [53] Kang Y, Mao W M, Chen Y J, et al. Effect of Ti content on grain size and mechanical properties of UNS S44100 ferritic stainless steel. Mater Sci Eng A, 2016, 677: 211 doi: 10.1016/j.msea.2016.08.070 [54] Michelic S K, Loder D, Reip T, et al. Characterization of TiN, TiC and Ti(C, N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies. Mater Charact, 2015, 100: 61 doi: 10.1016/j.matchar.2014.12.014 [55] Kellner H E O, Karasev A V, Sundqvist O, et al. Estimation of non-metallic inclusions in industrial Ni based alloys 825. Steel Res Int, 2017, 88(4): 1600024 doi: 10.1002/srin.201600024 [56] Kellner H E O, Karasev A V, Sundqvist O, et al. TiN particles and clusters during ladle treatments of Ni-based alloy 825 using different stirring modes. ISIJ Int, 2018, 58(2): 292 doi: 10.2355/isijinternational.ISIJINT-2017-355 [57] Tian Q R, Wang G C, Shang D L, et al. In situ observation of the precipitation, aggregation, and dissolution behaviors of TiN inclusion on the surface of liquid GCr15 bearing steel. Metall Mater Trans B, 2018, 49(6): 3137 doi: 10.1007/s11663-018-1411-8 [58] Tian Q R, Wang G C, Zhao Y, et al. Precipitation behaviors of TiN inclusion in GCr15 bearing steel billet. Metall Mater Trans B, 2018, 49(3): 1149 doi: 10.1007/s11663-018-1230-y [59] Busch J D, DeBarbadillo J J, Krane M J M. Flux entrapment and titanium nitride defects in electroslag remelting of INCOLOY alloys 800 and 825. Metall Mater Trans A, 2013, 44(12): 5295 doi: 10.1007/s11661-013-1659-1 [60] Park J H. Effect of inclusions on the solidification structures of ferritic stainless steel: Computational and experimental study of inclusion evolution. Calphad, 2011, 35(4): 455 doi: 10.1016/j.calphad.2011.08.004 [61] Fujimura H, Tsuge S, Komizo Y, et al. Effect of oxide composition on solidification structure of Ti added ferritic stainless steel. Tetsu-to-Hagane, 2001, 87(11): 707 doi: 10.2355/tetsutohagane1955.87.11_707 [62] Kimura K, Fukumoto S, Shigesato G I, et al. Effect of Mg addition on equiaxed grain formation in ferritic stainless steel. ISIJ Int, 2013, 53(12): 2167 doi: 10.2355/isijinternational.53.2167 [63] Shi X F. Refining of Solidification Structure of 430 Stainless Steel with TiN Contained Complex Nucleus [Dissertation]. Beijing: University of Science and Technology Beijing, 2011施曉芳. 含TiN復合核心細化430不銹鋼凝固組織[學位論文]. 北京: 北京科技大學, 2011 [64] Hou Y Y, Cheng G G. Effect of Nb on the as-cast structure and compactness degree of ferritic stainless steel dual stabilized by Ti and Nb. ISIJ Int, 2018, 58(12): 2298 doi: 10.2355/isijinternational.ISIJINT-2017-595 [65] Hou Y Y, Cheng G G, Cheng H J. Effect of oxide composition on the orientation relationship and disregistry in complex nucleus of Ti and Nb stabilized ferritic stainless steel revealed by EBSD measurement. Metall Mater Trans B, 2020, 51(2): 709 doi: 10.1007/s11663-019-01767-x [66] Fu J W, Nie Q Q, Qiu W X, et al. Crystallography and growth mechanism of TiN in Fe?17Cr stainless steel during solidification. J Mater Process Technol, 2018, 253: 43 doi: 10.1016/j.jmatprotec.2017.11.003 [67] Hou Y Y. Effect of Titanium and Niobium on Second Phase Precipitation during Solidification and As-Cast Structure of High-Purity Ferritic Stainless Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2020侯雨陽. 鈦、鈮對超純鐵素體不銹鋼凝固過程第二相析出及對凝固組織的影響[學位論文]. 北京: 北京科技大學, 2020 [68] Hou Y Y, Cheng G G. Effects of nucleus density and dendritic growth influenced by Ti and Nb on solidification structure of Fe-18 pct Cr ferritic stainless steel. Metall Mater Trans B, 2019, 50(3): 1322 doi: 10.1007/s11663-019-01557-5 [69] Hou Y Y, Cheng G G. Formation mechanism and nucleation effect of Ti2O3?TiN complex nucleus at solidification front of 18Cr ferritic stainless steel. Metall Mater Trans B, 2019, 50(3): 1351 doi: 10.1007/s11663-019-01540-0 [70] Son J, Kim S, Lee J, et al. Effect of N addition on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels. Metall Mater Trans A, 2003, 34(8): 1617 doi: 10.1007/s11661-003-0307-6 [71] Jang Y, Son J, Kim S, et al. Effect of different Cr contents on tensile and corrosion behaviors of 0.13 pct N-containing CD4MCU cast duplex stainless steels. Metall Mater Trans A, 2004, 35(11): 3431 [72] Jang Y, Kim S, Lee J. Effect of different Mo contents on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels. Metall Mater Trans A, 2005, 36(5): 1229 doi: 10.1007/s11661-005-0215-z [73] Wang Q M, Cheng G G, Hou Y Y. Effect of titanium addition on as-cast structure and high-temperature tensile property of 20Cr?8Ni stainless steel for heavy castings. Metals, 2020, 10(4): 529 doi: 10.3390/met10040529 -